A Wolf–Rayet-like progenitor of SN 2013cu from spectral observations of a stellar wind

The explosive fate of massive Wolf–Rayet stars (WRSs) is a key open question in stellar physics. An appealing option is that hydrogen-deficient WRSs are the progenitors of some hydrogen-poor supernova explosions of types IIb, Ib and Ic (ref. 2). A blue object, having luminosity and colours consistent with those of some WRSs, has recently been identified in pre-explosion images at the location of a supernova of type Ib (ref. 3), but has not yet been conclusively determined to have been the progenitor. Similar work has so far only resulted in non-detections. Comparison of early photometric observations of type Ic supernovae with theoretical models suggests that the progenitor stars had radii of less than 1012 centimetres, as expected for some WRSs. The signature of WRSs, their emission line spectra, cannot be probed by such studies. Here we report the detection of strong emission lines in a spectrum of type IIb supernova 2013cu (iPTF13ast) obtained approximately 15.5 hours after explosion (by ‘flash spectroscopy’, which captures the effects of the supernova explosion shock breakout flash on material surrounding the progenitor star). We identify Wolf–Rayet-like wind signatures, suggesting a progenitor of the WN(h) subclass (those WRSs with winds dominated by helium and nitrogen, with traces of hydrogen). The extent of this dense wind may indicate increased mass loss from the progenitor shortly before its explosion, consistent with recent theoretical predictions.

[1]  M. Phillips,et al.  The supernova 1983k in NGC 4699 : clues to the nature of type II progenitors. , 1985 .

[2]  D. Hillier An empirical model for the Wolf-Rayet star HD 50896 , 1987 .

[3]  D. Osterbrock,et al.  Astrophysics of Gaseous Nebulae and Active Galactic Nuclei , 1989 .

[4]  L. Prévot,et al.  The spectrograms of Sanduleak ― 69o202, precursor to Supernova 1987A in the Large Magellanic Cloud , 1989 .

[5]  M. Phillips,et al.  THE LIGHT CURVE OF THE PLATEAU TYPE II SN 1983K , 1990 .

[6]  Harland W. Epps,et al.  THE KECK LOW-RESOLUTION IMAGING SPECTROMETER , 1995 .

[7]  T. Matheson,et al.  Submitted to The Astrophysical Journal Evidence for Asphericity in the Type IIn Supernova 1998S , 1999 .

[8]  Optical Spectra of Supernovae , 2001, astro-ph/0111573.

[9]  Alison L. Coil,et al.  The DEIMOS spectrograph for the Keck II Telescope: integration and testing , 2003, SPIE Astronomical Telescopes + Instrumentation.

[10]  Mukund Patel,et al.  Integration and Testing , 2004 .

[11]  A. Niedzielski,et al.  Kinematical Structure of Wolf-Rayet Winds. II. Internal Velocity Scatter in WN Stars , 2004 .

[12]  W.-R. Hamann,et al.  The Galactic WN stars. Spectral analyses with line-blanketed model atmospheres versus stellar evolut , 2006 .

[13]  P. Crowther,et al.  Physical Properties of Wolf-Rayet Stars , 2006, astro-ph/0610356.

[14]  M. J. Page,et al.  Photometric calibration of the Swift ultraviolet/optical telescope , 2007, 0708.2259.

[15]  S. Smartt,et al.  The type IIb SN 2008ax: the nature of the progenitor , 2008, 0805.1913.

[16]  N. Chugai Circumstellar interaction in type Ibn supernovae and SN 2006jc , 2009, 0908.0568.

[17]  Ernest E. Croner,et al.  The Palomar Transient Factory: System Overview, Performance, and First Results , 2009, 0906.5350.

[18]  Copenhagen,et al.  The death of massive stars – I. Observational constraints on the progenitors of Type II-P supernovae , 2009 .

[19]  Oxford,et al.  Exploring the Optical Transient Sky with the Palomar Transient Factory , 2009, 0906.5355.

[20]  Richard Walters,et al.  CORE-COLLAPSE SUPERNOVAE FROM THE PALOMAR TRANSIENT FACTORY: INDICATIONS FOR A DIFFERENT POPULATION IN DWARF GALAXIES , 2010, 1004.0615.

[21]  E. O. Ofek,et al.  SUPERNOVA PTF 09UJ: A POSSIBLE SHOCK BREAKOUT FROM A DENSE CIRCUMSTELLAR WIND , 2010, 1009.5378.

[22]  Mohan Ganeshalingam,et al.  Nearby Supernova Rates from the Lick Observatory Supernova Search. II. The Observed Luminosity Functions and Fractions of Supernovae in a Complete Sample , 2010, 1006.4612.

[23]  N. Langer,et al.  Wind modelling of very massive stars up to 300 solar masses , 2011, 1105.0556.

[24]  S. Woosley,et al.  Core-collapse explosions of Wolf–Rayet stars and the connection to Type IIb/Ib/Ic supernovae , 2011, 1102.5160.

[25]  Richard Walters,et al.  REAL-TIME DETECTION AND RAPID MULTIWAVELENGTH FOLLOW-UP OBSERVATIONS OF A HIGHLY SUBLUMINOUS TYPE II-P SUPERNOVA FROM THE PALOMAR TRANSIENT FACTORY SURVEY , 2011, 1106.0400.

[26]  David Polishook,et al.  SN 2011dh: DISCOVERY OF A TYPE IIb SUPERNOVA FROM A COMPACT PROGENITOR IN THE NEARBY GALAXY M51 , 2011, 1106.3551.

[27]  Judith G. Cohen,et al.  SN 2011dh: DISCOVERY OF A TYPE IIb SUPERNOVA FROM A COMPACT PROGENITOR IN THE NEARBY GALAXY M51 , 2011, 1106.3551.

[28]  Sagi Ben-Ami,et al.  The SED Machine: a dedicated transient IFU spectrograph , 2012, Other Conferences.

[29]  A. Gal-yam,et al.  WISeREP—An Interactive Supernova Data Repository , 2012, 1204.1891.

[30]  R. C. Dixon,et al.  DISCOVERY AND EARLY MULTI-WAVELENGTH MEASUREMENTS OF THE ENERGETIC TYPE IC SUPERNOVA PTF12GZK: A MASSIVE-STAR EXPLOSION IN A DWARF HOST GALAXY , 2012, 1208.5900.

[31]  P. Mazzali,et al.  How much H and He is ‘hidden’ in SNe Ib/c? – I. Low-mass objects , 2012, 1201.1506.

[32]  S. Owocki,et al.  Stellar envelope inflation near the Eddington limit - Implications for the radii of Wolf-Rayet stars and luminous blue variables , 2011, 1112.1910.

[33]  R. C. Dixon,et al.  DISCOVERY AND EARLY MULTI-WAVELENGTH MEASUREMENTS OF THE ENERGETIC TYPE IC SUPERNOVA PTF12GZK: A MASSIVE-STAR EXPLOSION IN A DWARF HOST GALAXY , 2012, 1208.5900.

[34]  D. Frail,et al.  EVIDENCE FOR A COMPACT WOLF–RAYET PROGENITOR FOR THE TYPE Ic SUPERNOVA PTF 10vgv , 2011, 1110.5618.

[35]  R. Izzard,et al.  On the nature and detectability of Type Ib/c supernova progenitors , 2012, 1207.3683.

[36]  R. Kotak,et al.  THE TYPE IIb SUPERNOVA 2011dh FROM A SUPERGIANT PROGENITOR , 2012, 1207.5975.

[37]  E. Ofek,et al.  SN 2009ip: CONSTRAINTS ON THE PROGENITOR MASS-LOSS RATE , 2013, 1303.3894.

[38]  Jose H. Groh,et al.  Fundamental properties of core-collapse Supernova and GRB progenitors: predicting the look of massive stars before death , 2013, 1308.4681.

[39]  Peter E. Nugent,et al.  DISCOVERY, PROGENITOR AND EARLY EVOLUTION OF A STRIPPED ENVELOPE SUPERNOVA iPTF13bvn , 2013, 1307.1470.

[40]  E. Quataert,et al.  SETTING THE STAGE FOR CIRCUMSTELLAR INTERACTION IN CORE-COLLAPSE SUPERNOVAE. II. WAVE-DRIVEN MASS LOSS IN SUPERNOVA PROGENITORS , 2013, 1308.5978.

[41]  E. Gorbovskoy,et al.  Supernova 2013cu in UGC 9379 = Psn J14335897+4014207 , 2013 .

[42]  Wei Zheng,et al.  THE PROGENITOR OF SUPERNOVA 2011dh HAS VANISHED , 2013, 1305.3436.

[43]  Copenhagen,et al.  The death of massive stars – I. Observational constraints on the progenitors of Type II-P supernovae , 2008, 0809.0403.

[44]  R. Kotak,et al.  Optical and near-infrared observations of SN 2011dh – The first 100 days , 2013, 1305.1851.