Non‐equilibrium ionization model for stellar cluster winds and its application

We have developed a self-consistent physical model for superstellar cluster winds based on combining a 1D steady-state adiabatic wind solution and a non-equilibrium ionization calculation. Comparing with the case of collisional ionization equilibrium, we find that the non-equilibrium ionization effect is significant in the regime of a high ratio of energy to mass input rate and manifests in a stronger soft X-ray flux in the inner region of the star cluster. Implementing the model in X-ray data analysis softwares (e.g. xspec) directly facilitates comparisons with X-ray observations. Physical quantities such as the mass and energy input rates of stellar winds can be estimated by fitting observed X-ray spectra. The fitted parameters may then be compared with independent measurements from other wavelengths. Applying our model to the star cluster NGC 3603, we find that the wind accounts for no more than 50 per cent of the total ‘diffuse’ emission, and the derived mass input rate and terminal velocity are comparable to other empirical estimates. The remaining emission most likely originate from numerous low-mass pre-main-sequence stellar objects.

[1]  S. P. Reynolds,et al.  Supernova Remnants in the Sedov Expansion Phase: Thermal X-Ray Emission , 2000 .

[2]  M. Arnaud,et al.  Iron ionization and recombination rates and ionization equilibrium , 1992 .

[3]  M. Bessell,et al.  The Initial Mass Function and Stellar Content of NGC 3603 , 2004 .

[4]  M. Gu,et al.  Indirect X-Ray Line-Formation Processes in Iron L-Shell Ions , 2003 .

[5]  Cornelia Lang,et al.  The interplay between star formation and the nuclear environment of our Galaxy: deep X-ray observations of the Galactic centre Arches and Quintuplet clusters , 2006, astro-ph/0606282.

[6]  A. Cotera,et al.  Detection of X-Ray Emission from the Arches Cluster near the Galactic Center , 2001, astro-ph/0108174.

[7]  L. Spitzer Physical processes in the interstellar medium , 1998 .

[8]  G. del Zanna,et al.  CHIANTI—An Atomic Database for Emission Lines. IV. Extension to X-Ray Wavelengths , 2001 .

[9]  George K. Miley,et al.  On the nature and implications of starburst-driven galactic superwinds , 1990 .

[10]  D. Breitschwerdt,et al.  The local bubble , 1996 .

[11]  A. Pollock,et al.  Galactic Starburst NGC 3603 from X-Rays to Radio , 2013 .

[12]  Laurent Drissen,et al.  NGC 3603 and its Wolf-Rayet stars: Galactic clone of R136 at the core of 30 Doradus, but without the massive surrounding cluster halo , 1994 .

[13]  R. Sagar,et al.  A multicolour CCD photometric and mass function study of the distant southern open star clusters NGC 3105, NGC 3603, Melotte 105, Hogg 15, NGC 4815, Pismis 20 and NGC 6253 , 2001 .

[14]  T. M. Heckman,et al.  Chandra Observations of NGC 253. II. On the Origin of Diffuse X-Ray Emission in the Halos of Starburst Galaxies , 2001, astro-ph/0111511.

[15]  M. Dopita,et al.  Cooling functions for low-density astrophysical plasmas , 1993 .

[16]  R. Chevalier,et al.  Wind from a starburst galaxy nucleus , 1985, Nature.

[17]  D. A. Verner,et al.  Atomic data for astrophysics. I. Radiative recombination rates for H-like, He-like, Li-like, and Na-like ions over a broad range of temperature , 1996 .

[18]  C. N. Kodituwakku,et al.  Assessment of the Fluorescence and Auger DataBase Used in Plasma Modeling , 2003, astro-ph/0304200.

[19]  D. Osterbrock,et al.  Astrophysics of Gaseous Nebulae and Active Galactic Nuclei , 1989 .

[20]  Ralph S. Sutherland,et al.  Astrophysics of the Diffuse Universe , 2004 .

[21]  Jorge Cantó,et al.  The Hot, Diffuse Gas in a Dense Cluster of Massive Stars , 2000 .

[22]  Elena Masciadri,et al.  Simulated X-Ray Images and Spectra of the Arches Cluster , 2001 .

[23]  B. John,et al.  On Photospheric Faculae. , 1961 .

[24]  R. Latter,et al.  Electron Radiative Transitions in a Coulomb Field , 1961 .

[25]  Chris L. Fryer,et al.  Diffuse X-Rays from the Arches and Quintuplet Clusters , 2004, The Astrophysical Journal.

[26]  Multiple superbubbles in the starburst nucleus of NGC 5253? Implications for mass loss from dwarf galaxies , 1999, astro-ph/9902188.

[27]  Q. Wang,et al.  Correction for the Flux Measurement Bias in X-Ray Source Detection , 2004, astro-ph/0405272.

[28]  R. Kudritzki,et al.  WINDS FROM HOT STARS , 2000 .

[29]  B. Savage,et al.  A survey of interstellar H I from L-alpha absorption measurements. II , 1978 .

[30]  R. Egger,et al.  The local bubble , 1996 .

[31]  N. Brickhouse Atomic Data Needs for X-ray Astronomy , 2002 .

[32]  P. Young,et al.  CHIANTI—An Atomic Database for Emission Lines. VI. Proton Rates and Other Improvements , 2002, astro-ph/0209493.

[33]  I. Stevens,et al.  The cluster wind from local massive star clusters , 2003, astro-ph/0301038.

[34]  GLOBAL X-RAY PROPERTIES OF THE ORION NEBULA REGION , 2005, astro-ph/0506503.

[35]  C. Law,et al.  X-Ray Observations of Stellar Clusters Near the Galactic Center , 2004 .

[36]  J. Paradijs,et al.  X-Ray Spectroscopy in Astrophysics , 1999 .