On X-ray telescopes in general and the Athena optics in particular

Abstract The optical design of the most common type of X-ray telescopes is reviewed in this contribution and the imaging properties of these are discussed. Then the newest mostly European large mission, Athena, is presented and some of the most important properties imaging-wise are reviewed. Finally the science program for Athena is described where the emphasis is on the cosmic web and the population of AGNs.

[1]  F. Christensen,et al.  The Hot and Energetic Universe: The Optical Design of the Athena+ Mirror , 2013, 1307.1709.

[2]  Riccardo Giacconi,et al.  A “telescope” for soft X‐ray astronomy , 1960 .

[3]  Niels J. Westergaard,et al.  Coating optimization for the ATHENA+ mission , 2013, Optics & Photonics - Optical Engineering + Applications.

[4]  Jelle de Plaa,et al.  The X-ray Integral Field Unit (X-IFU) for Athena , 2013, Astronomical Telescopes and Instrumentation.

[5]  Marcos Bavdaz,et al.  Design, fabrication, and characterization of silicon pore optics for ATHENA/IXO , 2011, Optical Engineering + Applications.

[6]  Finn Erland Christensen,et al.  Development and characterization of coatings on silicon pore optics substrates for the ATHENA Mission , 2012, Other Conferences.

[7]  Allan Hornstrup,et al.  Coatings for the NuSTAR mission , 2011, Optical Engineering + Applications.

[8]  Niels Jørgen Stenfeldt Westergaard MT_RAYOR: a versatile raytracing tool for x-ray telescopes , 2011, Optical Engineering + Applications.

[9]  R. Chase,et al.  Design Parameters of Paraboloid-Hyperboloid Telescopes for X-ray Astronomy. , 1972, Applied optics.

[10]  F. E. Christensen,et al.  Development and production of a multilayer-coated x-ray reflecting stack for the Athena mission , 2016, Astronomical Telescopes + Instrumentation.

[11]  W. Werner,et al.  Imaging properties of Wolter I type x-ray telescopes. , 1977, Applied optics.

[12]  Yunjin Kim,et al.  Nuclear Spectroscopic Telescope Array (NuSTAR) Mission , 2013, 2013 IEEE Aerospace Conference.

[13]  B. Aschenbach,et al.  X-ray telescopes , 1985 .

[14]  B. Ott,et al.  The Hot and Energetic Universe: The Wide Field Imager (WFI) for Athena+ , 2013 .

[15]  Paolo Conconi,et al.  Silicon pore optics for the ATHENA telescope , 2016, Astronomical Telescopes + Instrumentation.

[16]  Finn Erland Christensen,et al.  Investigation of photolithography process on SPOs for the Athena mission , 2015, SPIE Optical Engineering + Applications.

[17]  Kim Lefmann,et al.  Simulating x-ray telescopes with McXtrace: a case study of ATHENA’s optics , 2016, Astronomical Telescopes + Instrumentation.

[18]  Gordon Tajiri,et al.  Fabrication of the NuSTAR flight optics , 2011, Optical Engineering + Applications.

[19]  H. Wolter Spiegelsysteme streifenden Einfalls als abbildende Optiken für Röntgenstrahlen , 1952 .

[20]  D. Spiga,et al.  Analytical computation of the off-axis effective area of grazing incidence X-ray mirrors , 2009 .

[21]  G. Pareschi,et al.  Science requirements and optimization of the silicon pore optics design for the Athena mirror , 2014, Astronomical Telescopes and Instrumentation.

[22]  Maximilien Collon,et al.  The Athena optics , 2015, SPIE Optical Engineering + Applications.

[23]  Asher Peres,et al.  Gravitational radiation damping of nongravitational motion , 1960 .

[24]  Joern Wilms,et al.  The Hot and Energetic Universe: A White Paper presenting the science theme motivating the Athena+ mission , 2013 .

[25]  Daniele Spiga,et al.  Mirrors for X-ray telescopes: Fresnel diffraction-based computation of point spread functions from metrology , 2014, 1409.1750.