Transport and Surface Reaction Model of a Photocatalytic Membrane during the Radical Filtration of Methylene Blue

[1]  N. Nasrollahi,et al.  Photocatalytic-membrane technology: a critical review for membrane fouling mitigation , 2021 .

[2]  M. Sillanpää,et al.  A critical review on application of photocatalysis for toxicity reduction of real wastewaters , 2020, Journal of Cleaner Production.

[3]  P. Kelly,et al.  Crystalline TiO2 supported on stainless steel mesh deposited in a one step process via pulsed DC magnetron sputtering for wastewater treatment applications , 2020, Journal of Materials Research and Technology.

[4]  J. Crittenden,et al.  Scaling-up a heterogeneous H2O2/TiO2/solar-radiation system using the Damköhler number , 2019, Chemical Engineering Journal.

[5]  L. Winnubst,et al.  Hydrothermal stability of silica, hybrid silica and Zr-doped hybrid silica membranes , 2017 .

[6]  M. Stintz,et al.  Modelling the influence of mass transfer on fixed-bed photocatalytic membrane reactors , 2017 .

[7]  C. Bowen,et al.  Design and validation of a LED-based high intensity photocatalytic reactor for quantifying activity measurements , 2017 .

[8]  R. Grieken,et al.  Influence of light distribution on the performance of photocatalytic reactors: LED vs mercury lamps , 2017 .

[9]  W. Ogieglo,et al.  Intrinsic photocatalytic assessment of reactively sputtered TiO₂ films. , 2015, ACS applied materials & interfaces.

[10]  M. L. Curri,et al.  UV and solar-based photocatalytic degradation of organic pollutants by nano-sized TiO2 grown on carbon nanotubes , 2015 .

[11]  Kun Wang,et al.  TiO2 based photocatalytic membranes: A review , 2014 .

[12]  M. I. Maldonado,et al.  Regeneration approaches for TiO2 immobilized photocatalyst used in the elimination of emerging contaminants in water , 2014 .

[13]  W. Ogieglo,et al.  Modeling intrinsic kinetics in immobilized photocatalytic microreactors , 2014 .

[14]  H. Ngo,et al.  A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. , 2014, The Science of the total environment.

[15]  N. Parvin,et al.  Microstructure, strength and CO2 separation characteristics of α-alumina supported γ-alumina thin film membrane , 2013 .

[16]  O. Hansen,et al.  A generic model for photocatalytic activity as a function of catalyst thickness , 2012 .

[17]  Yi-Feng Lin,et al.  Rapid atmospheric plasma spray coating preparation and photocatalytic activity of macroporous titania nanocrystalline membranes , 2012 .

[18]  Matthias Wessling,et al.  Porous Photocatalytic Membrane Microreactor (P2M2): A new reactor concept for photochemistry , 2011 .

[19]  M. I. Maldonado,et al.  Degradation study of 15 emerging contaminants at low concentration by immobilized TiO2 in a pilot plant , 2010 .

[20]  M. Seery,et al.  Spectroscopic Investigation of the Anatase-to-Rutile Transformation of Sol−Gel-Synthesized TiO2 Photocatalysts , 2009 .

[21]  D. Bahnemann,et al.  Photodegradation of methylene blue in water, a standard method to determine the activity of photocatalytic coatings? , 2008 .

[22]  Alberto Brucato,et al.  Dimensionless analysis of slurry photocatalytic reactors using two-flux and six-flux radiation absorption–scattering models , 2007 .

[23]  M. L. Curri,et al.  Photocatalytic degradation of methyl red by TiO2: comparison of the efficiency of immobilized nanoparticles versus conventional suspended catalyst. , 2007, Journal of hazardous materials.

[24]  T. Tachikawa,et al.  Mechanistic Insight into the TiO2 Photocatalytic Reactions: Design of New Photocatalysts , 2007 .

[25]  K. Fujita,et al.  Monolithic TiO2 with controlled multiscale porosity via a template-free sol-gel process accompanied by phase separation , 2006 .

[26]  Chang-Tang Chang,et al.  Degradation of di-n-butyl phthalate using photoreactor packed with TiO2 immobilized on glass beads. , 2006, Journal of hazardous materials.

[27]  R. Herz Intrinsic kinetics of first-order reactions in photocatalytic membranes and layers , 2004 .

[28]  D. Ollis Integrating Photocatalysis and Membrane Technologies for Water Treatment , 2003, Annals of the New York Academy of Sciences.

[29]  T. Tsuru,et al.  Photocatalytic Reactions in a Filtration System through Porous Titanium Dioxide Membranes , 2001 .

[30]  Hyunwoong Park,et al.  Investigation on TiO2-coated optical fibers for gas-phase photocatalytic oxidation of acetone , 2001 .

[31]  G. L. Puma,et al.  A novel fountain photocatalytic reactor: model development and experimental validation , 2001 .

[32]  A. Beenackers,et al.  Comparison of the efficiency of immobilized and suspended systems in photocatalytic degradation , 2001 .

[33]  Akira Fujishima,et al.  Titanium dioxide photocatalysis , 2000 .

[34]  Po Lock Yue,et al.  A laminar falling film slurry photocatalytic reactor. Part I—model development , 1998 .

[35]  G. L. Puma,et al.  A laminar falling film slurry photocatalytic reactor. Part II—experimental validation of the model , 1998 .

[36]  C. A. Smolders,et al.  Permporometry: the determination of the size distribution of active pores in UF membranes , 1992 .

[37]  R. W. Matthews Kinetics of photocatalytic oxidation of organic solutes over titanium dioxide , 1988 .

[38]  A. Bard,et al.  Heterogeneous photocatalytic oxidation of hydrocarbons on platinized titanium dioxide powders , 1980 .

[39]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[40]  H. Bruning,et al.  Photocatalytic degradation of metoprolol by TiO2 nanotube arrays and UV-LED: Effects of catalyst properties, operational parameters, commonly present water constituents, and photo-induced reactive species , 2018 .

[41]  F. Osorio,et al.  Advanced Oxidation Processes for Wastewater Treatment: State of the Art , 2009 .

[42]  A. Reller,et al.  Photoinduced reactivity of titanium dioxide , 2004 .

[43]  F. Díaz-Fierros,et al.  ADSORPTION OF METHYLENE BLUE BY RED MUD, AN OXIDE­ RICH BYPRODUCT OF BAUXITE REFINING , 1999 .