SVD-matching using SIFT features

The paper tackles the problem of feature points matching between pair of images of the same scene. This is a key problem in computer vision. The method we discuss here is a version of the SVD-matching proposed by Scott and Longuet-Higgins and later modified by Pilu, that we elaborate in order to cope with large scale variations. To this end we add to the feature detection phase a keypoint descriptor that is robust to large scale and view-point changes. Furthermore, we include this descriptor in the equations of the proximity matrix that is central to the SVD-matching. At the same time we remove from the proximity matrix all the information about the point locations in the image, that is the source of mismatches when the amount of scene variation increases. The main contribution of this work is in showing that this compact and easy algorithm can be used for severe scene variations. We present experimental evidence of the improved performance with respect to the previous versions of the algorithm.

[1]  Azriel Rosenfeld,et al.  Robust regression methods for computer vision: A review , 1991, International Journal of Computer Vision.

[2]  Josef Kittler,et al.  On the correspondence problem for wide angular separation of non-coplanar points , 1998, Image Vis. Comput..

[3]  Michael Brady,et al.  Feature-based correspondence: an eigenvector approach , 1992, Image Vis. Comput..

[4]  Edward H. Adelson,et al.  The Design and Use of Steerable Filters , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  James L. Crowley,et al.  A Representation for Shape Based on Peaks and Ridges in the Difference of Low-Pass Transform , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Hans P. Moravec Rover Visual Obstacle Avoidance , 1981, IJCAI.

[8]  T. Lindeberg Scale-Space Theory : A Basic Tool for Analysing Structures at Different Scales , 1994 .

[9]  Roberto Manduchi,et al.  Wide baseline feature matching using the cross-epipolar ordering constraint , 2004, CVPR 2004.

[10]  Marc Pollefeys,et al.  Multiple view geometry , 2005 .

[11]  Cordelia Schmid,et al.  Scale & Affine Invariant Interest Point Detectors , 2004, International Journal of Computer Vision.

[12]  Michael I. Jordan Graphical Models , 1998 .

[13]  Jiri Matas,et al.  Robust wide-baseline stereo from maximally stable extremal regions , 2004, Image Vis. Comput..

[14]  Tony Lindeberg,et al.  Principles for Automatic Scale Selection , 1999 .

[15]  Azriel Rosenfeld,et al.  Two-Stage Template Matching , 1977, IEEE Transactions on Computers.

[16]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[17]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[18]  Manolis I. A. Lourakis,et al.  Feature Transfer and Matching in Disparate Stereo Views through the Use of Plane Homographies , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Stefan Carlsson,et al.  Combining Appearance and Topology for Wide Baseline Matching , 2002, ECCV.

[20]  Cordelia Schmid,et al.  An Affine Invariant Interest Point Detector , 2002, ECCV.

[21]  Alex Pentland,et al.  Modal Matching for Correspondence and Recognition , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Tony Lindeberg,et al.  Scale-space theory : A framework for handling image structures at multiple scales , 1996 .

[23]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[24]  D. Ruppert Robust Statistics: The Approach Based on Influence Functions , 1987 .

[25]  Cordelia Schmid,et al.  Local Grayvalue Invariants for Image Retrieval , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  Luc Van Gool,et al.  Wide-baseline multiple-view correspondences , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[27]  Chris Harris,et al.  Geometry from visual motion , 1993 .

[28]  Olivier D. Faugeras,et al.  What can two images tell us about a third one? , 1994, ECCV.

[29]  Ramin Zabih,et al.  Non-parametric Local Transforms for Computing Visual Correspondence , 1994, ECCV.

[30]  Tony Lindeberg Kth Scale-space: A framework for handling image structures at multiple scales , 1996 .

[31]  Adam Baumberg,et al.  Reliable feature matching across widely separated views , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[32]  Michel Dhome,et al.  Recognition of 3D textured objects by mixing view-based and model-based representations , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[33]  Maurizio Pilu,et al.  A direct method for stereo correspondence based on singular value decomposition , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[34]  Ronen Basri,et al.  Texture segmentation by multiscale aggregation of filter responses and shape elements , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[35]  Matthew A. Brown,et al.  Invariant Features from Interest Point Groups , 2002, BMVC.

[36]  Cordelia Schmid,et al.  Evaluation of Interest Point Detectors , 2000, International Journal of Computer Vision.

[37]  Olivier D. Faugeras,et al.  What can two images tell us about a third one? , 2004, International Journal of Computer Vision.

[38]  Rachid Deriche,et al.  Robust Recovery of the Epipolar Geometry for an Uncalibrated Stereo Rig , 1994, ECCV.

[39]  Roberto Manduchi,et al.  Wide baseline feature matching using the cross-epipolar ordering constraint , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[40]  Cordelia Schmid,et al.  A performance evaluation of local descriptors , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[41]  Edwin R. Hancock,et al.  Spectral correspondence for point pattern matching , 2003, Pattern Recognit..

[42]  Emanuele Trucco,et al.  Introductory techniques for 3-D computer vision , 1998 .

[43]  Nathan Intrator,et al.  Complex cells and Object Recognition , 1997 .

[44]  H. C. Longuet-Higgins,et al.  An algorithm for associating the features of two images , 1991, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[45]  Ali Shokoufandeh,et al.  View-based object recognition using saliency maps , 1999, Image Vis. Comput..

[46]  Luc Van Gool,et al.  Wide Baseline Stereo Matching based on Local, Affinely Invariant Regions , 2000, BMVC.

[47]  Yair Weiss,et al.  Segmentation using eigenvectors: a unifying view , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[48]  Andrew Zisserman,et al.  Wide baseline stereo matching , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[49]  Cordelia Schmid,et al.  Automatic line matching across views , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[50]  Rachid Deriche,et al.  A Robust Technique for Matching two Uncalibrated Images Through the Recovery of the Unknown Epipolar Geometry , 1995, Artif. Intell..

[51]  Oliver Schreer,et al.  Three-dimensional image processing in the future of immersive media , 2004, IEEE Transactions on Circuits and Systems for Video Technology.

[52]  Carlo Tomasi,et al.  Good features to track , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[53]  Francesca Odone,et al.  SVD-Matching using SIFT Features , 2005, VVG.

[54]  Shinji Umeyama,et al.  An Eigendecomposition Approach to Weighted Graph Matching Problems , 1988, IEEE Trans. Pattern Anal. Mach. Intell..