Systematic errors in measuring parameters of non-spinning compact binary coalescences with post-Newtonian templates
暂无分享,去创建一个
[1] W. Marsden. I and J , 2012 .
[2] Yi Pan,et al. Comparison of post-Newtonian templates for compact binary inspiral signals in gravitational-wave detectors , 2009, 0907.0700.
[3] B. S. Sathyaprakash,et al. Searching for binary coalescences with inspiral templates: detection and parameter estimation , 2009, 0902.0307.
[4] P. Ajith,et al. Estimating the parameters of nonspinning binary black holes using ground-based gravitational-wave detectors: Statistical errors , 2009, 0901.4936.
[5] Masaru Shibata,et al. Measuring the neutron star equation of state with gravitational wave observations , 2009, 0901.3258.
[6] Masaru Shibata,et al. Simulating coalescing compact binaries by a new code (SACRA) , 2008, 0806.4007.
[7] P. Ajith,et al. Template bank for gravitational waveforms from coalescing binary black holes: Nonspinning binaries , 2008 .
[8] B. Giacomazzo,et al. Accurate evolutions of inspiralling neutron-star binaries: Prompt and delayed collapse to a black hole , 2008, 0804.0594.
[9] Z. Etienne,et al. General relativistic simulations of magnetized binary neutron star mergers , 2008, 0803.4193.
[10] P. Ajith. Gravitational-wave data analysis using binary black-hole waveforms , 2007, 0712.0343.
[11] M. Shibata,et al. Merger of black hole and neutron star in general relativity: Tidal disruption, torus mass, and gravitational waves , 2007, 0711.1410.
[12] William H. Press,et al. Numerical Recipes 3rd Edition: The Art of Scientific Computing , 2007 .
[13] M. Vallisneri,et al. LISA detections of massive black hole inspirals: Parameter extraction errors due to inaccurate template waveforms , 2007, 0707.2982.
[14] T. Cokelaer. Gravitational waves from inspiralling compact binaries: Hexagonal template placement and its efficiency in detecting physical signals , 2007, 0706.4437.
[15] H. Janka,et al. Gravitational waves from relativistic neutron-star mergers with microphysical equations of state. , 2007, Physical review letters.
[16] Are moving punctures equivalent to moving black holes , 2007, gr-qc/0701038.
[17] M. Bejger,et al. The final phase of inspiral of neutron stars: Realistic equations of state , 2004, gr-qc/0412010.
[18] D. Sigg,et al. Status of the LIGO detectors , 2006 .
[19] D. Shoemaker,et al. Unequal mass binary black hole plunges and gravitational recoil , 2006, gr-qc/0601026.
[20] Dae-Il Choi,et al. Gravitational-wave extraction from an inspiraling configuration of merging black holes. , 2005, Physical review letters.
[21] Y. Zlochower,et al. Accurate evolutions of orbiting black-hole binaries without excision. , 2005, Physical review letters.
[22] T. Damour,et al. Erratum: Comparison of search templates for gravitational waves from binary inspiral [Phys. Rev. D 63, 044023 (2001)] , 2005 .
[23] F. Pretorius. Evolution of binary black-hole spacetimes. , 2005, Physical review letters.
[24] Masaru Shibata,et al. MERGER OF BINARY NEUTRON STARS IN FULLY GENERAL RELATIVISTIC SIMULATION , 2002, gr-qc/0203037.
[25] T. Damour,et al. A Comparison of search templates for gravitational waves from binary inspiral , 2000, gr-qc/0010009.
[26] A. Pai,et al. A data-analysis strategy for detecting gravitational-wave signals from inspiraling compact binaries with a network of laser-interferometric detectors , 2000, gr-qc/0009078.
[27] T. Damour,et al. Effective one-body approach to general relativistic two-body dynamics , 1998, gr-qc/9811091.
[28] S. Rowan,et al. THE DETECTION OF GRAVITATIONAL WAVES , 1999 .
[29] Carl W. Helstrom,et al. Elements of signal detection and estimation , 1994 .
[30] B. Schutz. Data Processing, analysis, and storage for interferometric antennas , 1991 .