One-Step Solvent-Free Mechanochemical Incorporation of Insoluble Cesium Salt into Perovskites for Wide Band-Gap Solar Cells

[1]  Parnian Ferdowsi,et al.  Ultrathin polymeric films for interfacial passivation in wide band-gap perovskite solar cells , 2020, Scientific Reports.

[2]  Wenkang Wang,et al.  Effective Control of the Growth and Photoluminescence Properties of CsPbBr3/Cs4PbBr6 Nanocomposites by Solvent Engineering , 2019, ACS omega.

[3]  E. Boldyreva,et al.  Ball size or ball mass – what matters in organic mechanochemical synthesis? , 2019, CrystEngComm.

[4]  S. Zakeeruddin,et al.  Engineering of Perovskite Materials Based on Formamidinium and Cesium Hybridization for High-Efficiency Solar Cells , 2019, Chemistry of Materials.

[5]  Thomas Kirchartz,et al.  Open-Circuit Voltages Exceeding 1.26 V in Planar Methylammonium Lead Iodide Perovskite Solar Cells , 2018, ACS Energy Letters.

[6]  Guofu Zhou,et al.  Wide‐Bandgap Perovskite Solar Cells With Large Open‐Circuit Voltage of 1653 mV Through Interfacial Engineering , 2018 .

[7]  S. Zakeeruddin,et al.  One-step mechanochemical incorporation of an insoluble cesium additive for high performance planar heterojunction solar cells , 2018, Nano Energy.

[8]  Steve Albrecht,et al.  How to Make over 20% Efficient Perovskite Solar Cells in Regular (n–i–p) and Inverted (p–i–n) Architectures , 2018, Chemistry of Materials.

[9]  J. Hofkens,et al.  Perovskite seeding growth of formamidinium-lead-iodide-based perovskites for efficient and stable solar cells , 2018, Nature Communications.

[10]  E. Boldyreva,et al.  The effect of ball mass on the mechanochemical transformation of a single-component organic system: anhydrous caffeine , 2018, Journal of Materials Science.

[11]  S. Saha,et al.  All-Solid-State Mechanochemical Synthesis and Post-Synthetic Transformation of Inorganic Perovskite-type Halides. , 2018, Chemistry.

[12]  K. Yoshino,et al.  Ultrafast Electron Injection from Photoexcited Perovskite CsPbI3 QDs into TiO2 Nanoparticles with Injection Efficiency near 99. , 2018, The journal of physical chemistry letters.

[13]  F. Fauth,et al.  Elucidating the Methylammonium (MA) Conformation in MAPbBr3 Perovskite with Application in Solar Cells. , 2017, Inorganic chemistry.

[14]  S. Zakeeruddin,et al.  Reduction in the Interfacial Trap Density of Mechanochemically Synthesized MAPbI3. , 2017, ACS applied materials & interfaces.

[15]  K. Catchpole,et al.  Interface passivation using ultrathin polymer–fullerene films for high-efficiency perovskite solar cells with negligible hysteresis , 2017 .

[16]  Sung-Hoon Kim,et al.  Spectroscopic study on the interaction of organic-inorganic hybrid perovskite nanoparticles with linear aliphatic alcohols , 2017 .

[17]  S. Zakeeruddin,et al.  Mechanosynthesis of pure phase mixed-cation MAxFA1−xPbI3 hybrid perovskites: photovoltaic performance and electrochemical properties , 2017 .

[18]  Min Gyu Kim,et al.  Colloidally prepared La-doped BaSnO3 electrodes for efficient, photostable perovskite solar cells , 2017, Science.

[19]  Haolei Zhang,et al.  Solvent-Free Mechanosynthesis of Composition-Tunable Cesium Lead Halide Perovskite Quantum Dots. , 2017, The journal of physical chemistry letters.

[20]  S. Sapra,et al.  Solvent-free, mechanochemical syntheses of bulk trihalide perovskites and their nanoparticles. , 2017, Chemical communications.

[21]  Anders Hagfeldt,et al.  Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance , 2016, Science.

[22]  R. Luque,et al.  Benign-by-Design Solventless Mechanochemical Synthesis of Three-, Two-, and One-Dimensional Hybrid Perovskites. , 2016, Angewandte Chemie.

[23]  Marcus L. Böhm,et al.  Low-Temperature Solution-Grown CsPbBr3 Single Crystals and Their Characterization , 2016 .

[24]  Anders Hagfeldt,et al.  Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5ee03874j Click here for additional data file. , 2016, Energy & environmental science.

[25]  S. Chang,et al.  A perovskite cell with a record-high-V(oc) of 1.61 V based on solvent annealed CH3NH3PbBr3/ICBA active layer. , 2016, Nanoscale.

[26]  Ursula Rothlisberger,et al.  Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells , 2016 .

[27]  David Cahen,et al.  Cesium Enhances Long-Term Stability of Lead Bromide Perovskite-Based Solar Cells. , 2015, The journal of physical chemistry letters.

[28]  M. Grätzel,et al.  Mechanosynthesis of the hybrid perovskite CH3NH3PbI3: characterization and the corresponding solar cell efficiency , 2015 .

[29]  D. Abou‐Ras,et al.  Light-Induced Increase of Electron Diffusion Length in a p-n Junction Type CH3NH3PbBr3 Perovskite Solar Cell. , 2015, The journal of physical chemistry letters.

[30]  Yang Yang,et al.  Under the spotlight: The organic–inorganic hybrid halide perovskite for optoelectronic applications , 2015 .

[31]  Steffen Meyer,et al.  Degradation observations of encapsulated planar CH3NH3PbI3 perovskite solar cells at high temperatures and humidity , 2015 .

[32]  Jinli Yang,et al.  Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques. , 2015, ACS nano.

[33]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[34]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[35]  D. Kabra,et al.  Quantitative Correlation of Perovskite Film Morphology to Light Emitting Diodes Efficiency Parameters , 2017 .

[36]  Michael Grätzel,et al.  Highly efficient and thermally stable organic sensitizers for solvent-free dye-sensitized solar cells. , 2008, Angewandte Chemie.