A Primal-Based Penalty Preconditioner for Elliptic Saddle Point Systems

A primal-based penalty preconditioner is presented for a linear set of equations arising from elliptic saddle point problems. We show that the eigenvalues of the preconditioned matrix are positive real and demonstrate that a variant of the preconditioner can be combined with the conjugate gradient algorithm. Our approach is motivated by two basic observations. First, the solution of a problem with constraints is often similar to the solution of a problem where the constraints are penalized. Second, certain methods of solution not available for a constrained problem are possible for its penalized counterpart so motivating a primal-based Schur complement approach. Numerical examples for elliptic two- and three-dimensional problems are presented that confirm theoretical results and demonstrate the effectiveness of the preconditioner.

[1]  O. Axelsson Preconditioning of Indefinite Problems by Regularization , 1979 .

[2]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[3]  J. Cahouet,et al.  Some fast 3D finite element solvers for the generalized Stokes problem , 1988 .

[4]  J. Pasciak,et al.  A preconditioning technique for indefinite systems resulting from mixed approximations of elliptic problems , 1988 .

[5]  Some iterative methods for incompressible flow problems , 1989 .

[6]  G. Golub,et al.  Inexact and preconditioned Uzawa algorithms for saddle point problems , 1994 .

[7]  A. Wathen,et al.  Fast iterative solution of stabilised Stokes systems part II: using general block preconditioners , 1994 .

[8]  K. Bathe Finite Element Procedures , 1995 .

[9]  Howard C. Elman,et al.  Fast Nonsymmetric Iterations and Preconditioning for Navier-Stokes Equations , 1996, SIAM J. Sci. Comput..

[10]  Apostol T. Vassilev,et al.  Analysis of the Inexact Uzawa Algorithm for Saddle Point Problems , 1997 .

[11]  Axel Klawonn,et al.  An Optimal Preconditioner for a Class of Saddle Point Problems with a Penalty Term , 1995, SIAM J. Sci. Comput..

[12]  Axel Klawonn,et al.  Block-Triangular Preconditioners for Saddle Point Problems with a Penalty Term , 1998, SIAM J. Sci. Comput..

[13]  L. Pavarino,et al.  Overlapping Schwarz methods for mixed linear elasticity and Stokes problems , 1998 .

[14]  L. Pavarino Indefinite overlapping Schwarz methods for time-dependent Stokes problems☆ , 2000 .

[15]  O. Widlund,et al.  Balancing Neumann‐Neumann methods for incompressible Stokes equations , 2001 .

[16]  Olof B. Widlund,et al.  Balancing Neumann-Neumann preconditioners for mixed approximations of heterogeneous problems in linear elasticity , 2003, Numerische Mathematik.

[17]  CLARK R. DOHRMANN,et al.  A Preconditioner for Substructuring Based on Constrained Energy Minimization , 2003, SIAM J. Sci. Comput..

[18]  Clark R. Dohrmann,et al.  Convergence of a balancing domain decomposition by constraints and energy minimization , 2002, Numer. Linear Algebra Appl..

[19]  Per-Olof Persson,et al.  A Simple Mesh Generator in MATLAB , 2004, SIAM Rev..

[20]  Gene H. Golub,et al.  Numerical solution of saddle point problems , 2005, Acta Numerica.

[21]  Jing Li,et al.  A Dual-Primal FETI method for incompressible Stokes equations , 2005, Numerische Mathematik.

[22]  J. Mandel,et al.  An algebraic theory for primal and dual substructuring methods by constraints , 2005 .

[23]  Barry Lee,et al.  Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics , 2006, Math. Comput..

[24]  G. Golub,et al.  Gmres: a Generalized Minimum Residual Algorithm for Solving , 2022 .