A Primal-Based Penalty Preconditioner for Elliptic Saddle Point Systems
暂无分享,去创建一个
[1] O. Axelsson. Preconditioning of Indefinite Problems by Regularization , 1979 .
[2] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[3] J. Cahouet,et al. Some fast 3D finite element solvers for the generalized Stokes problem , 1988 .
[4] J. Pasciak,et al. A preconditioning technique for indefinite systems resulting from mixed approximations of elliptic problems , 1988 .
[5] Some iterative methods for incompressible flow problems , 1989 .
[6] G. Golub,et al. Inexact and preconditioned Uzawa algorithms for saddle point problems , 1994 .
[7] A. Wathen,et al. Fast iterative solution of stabilised Stokes systems part II: using general block preconditioners , 1994 .
[8] K. Bathe. Finite Element Procedures , 1995 .
[9] Howard C. Elman,et al. Fast Nonsymmetric Iterations and Preconditioning for Navier-Stokes Equations , 1996, SIAM J. Sci. Comput..
[10] Apostol T. Vassilev,et al. Analysis of the Inexact Uzawa Algorithm for Saddle Point Problems , 1997 .
[11] Axel Klawonn,et al. An Optimal Preconditioner for a Class of Saddle Point Problems with a Penalty Term , 1995, SIAM J. Sci. Comput..
[12] Axel Klawonn,et al. Block-Triangular Preconditioners for Saddle Point Problems with a Penalty Term , 1998, SIAM J. Sci. Comput..
[13] L. Pavarino,et al. Overlapping Schwarz methods for mixed linear elasticity and Stokes problems , 1998 .
[14] L. Pavarino. Indefinite overlapping Schwarz methods for time-dependent Stokes problems☆ , 2000 .
[15] O. Widlund,et al. Balancing Neumann‐Neumann methods for incompressible Stokes equations , 2001 .
[16] Olof B. Widlund,et al. Balancing Neumann-Neumann preconditioners for mixed approximations of heterogeneous problems in linear elasticity , 2003, Numerische Mathematik.
[17] CLARK R. DOHRMANN,et al. A Preconditioner for Substructuring Based on Constrained Energy Minimization , 2003, SIAM J. Sci. Comput..
[18] Clark R. Dohrmann,et al. Convergence of a balancing domain decomposition by constraints and energy minimization , 2002, Numer. Linear Algebra Appl..
[19] Per-Olof Persson,et al. A Simple Mesh Generator in MATLAB , 2004, SIAM Rev..
[20] Gene H. Golub,et al. Numerical solution of saddle point problems , 2005, Acta Numerica.
[21] Jing Li,et al. A Dual-Primal FETI method for incompressible Stokes equations , 2005, Numerische Mathematik.
[22] J. Mandel,et al. An algebraic theory for primal and dual substructuring methods by constraints , 2005 .
[23] Barry Lee,et al. Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics , 2006, Math. Comput..
[24] G. Golub,et al. Gmres: a Generalized Minimum Residual Algorithm for Solving , 2022 .