Dynamic Modeling and Dynamic Characteristic Analysis of a New Concept Stratospheric V-Shaped Airship

It has important scientific and engineering applications for near-space platform to design the buoyancy-lifting aircraft with both bigger volume and higher aerodynamic efficiency. This paper provided a design of a new concept V-shaped airship which has a capacity of buoyancy-lifting configuration than the same-weight class conventional airship. In addition, two engines could provide rolling, yawing and pitching moments for the V-shaped airship by changing directions and creating different thrust. Based on the thick aerofoil, the geometry of this V-shaped configuration was then used to develop an aerodynamic estimating model for the V-shaped airship. It renewed estimating methods for the added mass, inertia, the forces and the moments including aerodynamic and engine thrust of the V-shaped airship. Then this paper described a 6 Degree of Freedom (DOF) dynamic model for the V-shaped airship. The open-loop disturbance characteristic of the dynamic model was analyzed across a range of flight conditions and the added mass of the V-shaped airship were compared with the same weight-class teardrop-shaped dull-hull airship. Finally, the characteristics of buoyancy and lift between V-shaped airship and dull-hull airship were compared at different velocity. The results show that the aerodynamic efficiency of the V-shaped airship is improved obviously from the same-weight class dull-hull airship across a range of flight velocity.