The "true'' self-avoiding walk with bond repulsion on Z: limit theorems

The true self-avoiding walk with bond repulsion is a nearest neighbor random walk on Z, for which the probability of jumping along a bond of the lattice is proportional to exp(-g. number of previous jumps along that bond). First we prove a limit theorem for the distribution of the local time process of this walk. Using this result, later we prove a local limit theorem, as A → ∞, for the distribution of A -2/3 Xθ s/A , where θ s/A is a random time distributed geometrically with mean e -s/A (1 - e -s/A ) -1 = A/s + 0(1). As a by-product we also obtain an apparently new identity related to Brownian excursions and Bessel bridges.

[1]  H. McKean,et al.  Diffusion processes and their sample paths , 1996 .

[2]  T. Lindvall Weak convergence of probability measures and random functions in the function space D [0,∞) , 1973 .

[3]  Thomas Spencer,et al.  Self-avoiding walk in 5 or more dimensions , 1985 .

[4]  Harry Kesten,et al.  A limit law for random walk in a random environment , 1975 .

[5]  E. Bolthausen On self-repellent one dimensional random walks , 1990 .

[6]  N. Madras,et al.  THE SELF-AVOIDING WALK , 2006 .

[7]  Daniel J. Amit,et al.  Asymptotic behavior of the , 1983 .

[8]  T. Kurtz Approximation of Population Processes , 1987 .

[9]  F. Knight,et al.  Random walks and a sojourn density process of Brownian motion , 1963 .

[10]  Shinzo Watanabe,et al.  Branching Processes with Immigration and Related Limit Theorems , 1971 .

[11]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[12]  R. P. Boas,et al.  Higher Transcendental Functions, vols. I and II.Based, in part, on notes left by Harry Bateman.Bateman Project Staff, A. Erdélyi, Ed. McGraw-Hill, New York-London, 1953. vol. I, xxvi + 302 pp.,$6.50; vol. II, xviii + 396 pp., $7.50 , 1954 .

[13]  A. Erdélyi,et al.  Higher Transcendental Functions , 1954 .

[14]  D. A. Darling On the Supremum of a Certain Gaussian Process , 1983 .

[15]  M. Yor,et al.  Valeurs principales associées aux temps locaux browniens , 1987 .

[16]  B. Davis,et al.  Reinforced random walk , 1990 .

[17]  Robin Pemantle,et al.  Phase transition in reinforced random walk and RWRE on trees , 1988 .

[18]  S. Taylor DIFFUSION PROCESSES AND THEIR SAMPLE PATHS , 1967 .

[19]  G. Lawler Intersections of random walks , 1991 .

[20]  E. Nummelin General irreducible Markov chains and non-negative operators: Preface , 1984 .

[21]  W. Vervaat,et al.  A Relation between Brownian Bridge and Brownian Excursion , 1979 .

[22]  L. Peliti,et al.  Random walks with memory , 1987 .

[23]  H. Bateman,et al.  Tables of Integral Transforms [Volumes I & II] , 1954 .

[24]  M. Yor,et al.  Continuous martingales and Brownian motion , 1990 .