Analysis of topographic decorrelation in SAR interferometry using ratio coherence imagery

Topographic decorrelation due to the local surface slope has been an obstacle to interferometric synthetic aperture radar (InSAR) applications. A modified spatial decorrelation function is derived as a function of the baseline and topography. This function explains the origin of the total topographic decorrelation phenomenon on the slopes directly facing radar illumination and layover, which may mislead InSAR coherence image interpretation. The authors define critical terrain slope (or critical incidence angle) as the angle for which two SAR signals completely decorrelate regardless of surface stability. It is found that the width of the critical terrain slope increases with the increase of the component of the baseline perpendicular to the radar look direction. A new analytical method, the ratio coherence imagery, is then introduced to highlight total topographic decorrelation against the temporal decorrelation features. The applications of this methodology are demonstrated in selected locations in the Sahara Desert, Algeria, and Almer/spl inodot//spl acute/a, Spain, using ERS-1 and ERS-2 SAR data.

[1]  Howard A. Zebker,et al.  Decorrelation in interferometric radar echoes , 1992, IEEE Trans. Geosci. Remote. Sens..

[2]  Jong-Sen Lee,et al.  Intensity and phase statistics of multilook polarimetric and interferometric SAR imagery , 1994, IEEE Trans. Geosci. Remote. Sens..

[3]  J. M. Moore,et al.  Land surface change detection in a desert area in Algeria using multi-temporal ERS SAR coherence images , 2001 .

[4]  L. Joughin,et al.  Effective number of looks for a multilook interferometric phase distribution , 1994, Proceedings of IGARSS '94 - 1994 IEEE International Geoscience and Remote Sensing Symposium.

[5]  Paris W. Vachon,et al.  Coherence estimation for SAR imagery , 1999, IEEE Trans. Geosci. Remote. Sens..

[6]  D. C. Ghiglia IFSAR correlation improvement through local slope correction , 1998, IGARSS '98. Sensing and Managing the Environment. 1998 IEEE International Geoscience and Remote Sensing. Symposium Proceedings. (Cat. No.98CH36174).

[7]  Lars M. H. Ulander,et al.  Repeat-pass SAR interferometry over forested terrain , 1995, IEEE Transactions on Geoscience and Remote Sensing.

[8]  Fabio Rocca,et al.  The wavenumber shift in SAR interferometry , 1994, IEEE Trans. Geosci. Remote. Sens..

[9]  R. Bamler,et al.  Synthetic aperture radar interferometry , 1998 .

[10]  J. L. van Genderen,et al.  SAR interferometry : issues, techniques, applications , 1996 .

[11]  R. Bamler,et al.  Phase statistics of interferograms with applications to synthetic aperture radar. , 1994, Applied optics.

[12]  Jianguo Liu,et al.  Detection of rapid erosion in SE Spain using ERS SAR interferometric coherence imagery , 1999, Remote Sensing.

[13]  D. Massonnet,et al.  Effects of a refractive atmosphere on interferometric processing , 1994, Proceedings of IGARSS '94 - 1994 IEEE International Geoscience and Remote Sensing Symposium.

[14]  John C. Curlander,et al.  Synthetic Aperture Radar: Systems and Signal Processing , 1991 .

[15]  Jan Askne,et al.  Potential of interferometric SAR for classification of land surfaces , 1993, Proceedings of IGARSS '93 - IEEE International Geoscience and Remote Sensing Symposium.