Molecular disruption of DNA polymerase β for platinum sensitisation and synthetic lethality in epithelial ovarian cancers

[1]  M. Masařík,et al.  Unexpected therapeutic effects of cisplatin. , 2019, Metallomics : integrated biometal science.

[2]  G. Berx,et al.  The Role of Epithelial-to-Mesenchymal Plasticity in Ovarian Cancer Progression and Therapy Resistance , 2019, Cancers.

[3]  Stephen S. Taylor,et al.  DNA Replication Vulnerabilities Render Ovarian Cancer Cells Sensitive to Poly(ADP-Ribose) Glycohydrolase Inhibitors , 2019, Cancer cell.

[4]  M. Masařík,et al.  Cisplatin enhances cell stiffness and decreases invasiveness rate in prostate cancer cells by actin accumulation , 2019, Scientific Reports.

[5]  Kara Dolinski,et al.  The BioGRID interaction database: 2019 update , 2018, Nucleic Acids Res..

[6]  A. D’Andrea Mechanisms of PARP inhibitor sensitivity and resistance. , 2018, DNA repair.

[7]  Gabe S. Sonke,et al.  Maintenance Olaparib in Patients with Newly Diagnosed Advanced Ovarian Cancer , 2018, The New England journal of medicine.

[8]  M. Lopes,et al.  Selective Loss of PARG Restores PARylation and Counteracts PARP Inhibitor-Mediated Synthetic Lethality. , 2018, Cancer cell.

[9]  Siew Ching Ngai,et al.  E-cadherin: Its dysregulation in carcinogenesis and clinical implications. , 2018, Critical reviews in oncology/hematology.

[10]  H. Bryant,et al.  Specific killing of DNA damage-response deficient cells with inhibitors of poly(ADP-ribose) glycohydrolase , 2017, DNA repair.

[11]  Alan Ashworth,et al.  PARP inhibitors: Synthetic lethality in the clinic , 2017, Science.

[12]  V. Bohr,et al.  NAD+ in DNA repair and mitochondrial maintenance , 2017, Cell cycle.

[13]  Anne Floquet,et al.  Rucaparib in relapsed, platinum-sensitive high-grade ovarian carcinoma (ARIEL2 Part 1): an international, multicentre, open-label, phase 2 trial. , 2017, The Lancet. Oncology.

[14]  Ignace Vergote,et al.  Niraparib Maintenance Therapy in Platinum-Sensitive, Recurrent Ovarian Cancer. , 2016, The New England journal of medicine.

[15]  C. Heldin,et al.  Mechanisms of TGFβ-Induced Epithelial–Mesenchymal Transition , 2016, Journal of clinical medicine.

[16]  F. Cunningham,et al.  The Ensembl Variant Effect Predictor , 2016, Genome Biology.

[17]  Taresh K. Sethi,et al.  The histone variant H2A.X is a regulator of the epithelial–mesenchymal transition , 2016, Nature Communications.

[18]  T. Ellenberger,et al.  The rise and fall of poly(ADP-ribose): An enzymatic perspective. , 2015, DNA Repair.

[19]  R. Hromas,et al.  NSC666715 and Its Analogs Inhibit Strand-Displacement Activity of DNA Polymerase β and Potentiate Temozolomide-Induced DNA Damage, Senescence and Apoptosis in Colorectal Cancer Cells , 2015, PloS one.

[20]  O. Blaschuk N-cadherin antagonists as oncology therapeutics , 2015, Philosophical Transactions of the Royal Society B: Biological Sciences.

[21]  R. Sobol,et al.  ARTD1 (PARP1) activation and NAD(+) in DNA repair and cell death. , 2014, DNA repair.

[22]  C. Horbinski,et al.  PARP-1 regulates epithelial-mesenchymal transition (EMT) in prostate tumorigenesis. , 2014, Carcinogenesis.

[23]  James D. Brenton,et al.  Ovarian Cancer Cell Line Panel (OCCP): Clinical Importance of In Vitro Morphological Subtypes , 2014, PloS one.

[24]  Samy Lamouille,et al.  Molecular mechanisms of epithelial–mesenchymal transition , 2014, Nature Reviews Molecular Cell Biology.

[25]  A. Farina,et al.  Gelatinase B/MMP-9 in Tumour Pathogenesis and Progression , 2014, Cancers.

[26]  G. Dianov,et al.  Mammalian Base Excision Repair: the Forgotten Archangel , 2013, Nucleic acids research.

[27]  H. Bryant,et al.  Inhibition of poly(ADP-ribose) glycohydrolase (PARG) specifically kills BRCA2-deficient tumor cells , 2012, Cell cycle.

[28]  K. Khanra,et al.  Association between newly identified variant form of DNA polymerase beta (Δ 208-304) and ovarian cancer. , 2012, Cancer biomarkers : section A of Disease markers.

[29]  Sanjeev Banerjee,et al.  DNA Polymerase β as a Novel Target for Chemotherapeutic Intervention of Colorectal Cancer , 2011, PloS one.

[30]  S. Powell,et al.  BRCA1 and BRCA2: different roles in a common pathway of genome protection , 2011, Nature Reviews Cancer.

[31]  P. Johnston,et al.  Cells deficient in the base excision repair protein, DNA polymerase beta, are hypersensitive to oxaliplatin chemotherapy , 2010, Oncogene.

[32]  Sanjeev Banerjee,et al.  A Novel Inhibitor of DNA Polymerase β Enhances the Ability of Temozolomide to Impair the Growth of Colon Cancer Cells , 2009, Molecular Cancer Research.

[33]  K. Mimori,et al.  A platinum agent resistance gene, POLB, is a prognostic indicator in colorectal cancer , 2009, Journal of surgical oncology.

[34]  D. Lombard Sirtuins at the Breaking Point: SIRT6 in DNA Repair , 2009, Aging.

[35]  Zhao-Qi Wang,et al.  Poly (ADP-ribose) glycohydrolase (PARG) and its therapeutic potential. , 2009, Frontiers in bioscience.

[36]  V. Gervais,et al.  Bmc Structural Biology Structural Insights on the Pamoic Acid and the 8 Kda Domain of Dna Polymerase Beta Complex: towards the Design of Higher-affinity Inhibitors , 2022 .

[37]  K. Caldecott,et al.  Poly(ADP-Ribose) Polymerase 1 Accelerates Single-Strand Break Repair in Concert with Poly(ADP-Ribose) Glycohydrolase , 2007, Molecular and Cellular Biology.

[38]  G. Maga,et al.  Human base excision repair complex is physically associated to DNA replication and cell cycle regulatory proteins , 2007, Nucleic acids research.

[39]  T. Dawson,et al.  Apoptosis-inducing factor mediates poly(ADP-ribose) (PAR) polymer-induced cell death , 2006, Proceedings of the National Academy of Sciences.

[40]  R. Koehler,et al.  Poly(ADP-ribose) (PAR) polymer is a death signal , 2006, Proceedings of the National Academy of Sciences.

[41]  Z. Dong,et al.  Difference in expression level and localization of DNA polymerase beta among human esophageal cancer focus, adjacent and corresponding normal tissues. , 2006, Diseases of the esophagus : official journal of the International Society for Diseases of the Esophagus.

[42]  T. Dawson,et al.  The Road to Survival Goes through PARG , 2005, Cell cycle.

[43]  P. Garnier,et al.  NAD+ as a metabolic link between DNA damage and cell death , 2005, Journal of neuroscience research.

[44]  J. Sweasy,et al.  Is There a Link Between DNA Polymerase Beta and Cancer? , 2004, Cell cycle.

[45]  J. Sweasy Fidelity Mechanisms of DNA Polymerase β , 2003 .

[46]  J. Sweasy Fidelity mechanisms of DNA polymerase beta. , 2003, Progress in nucleic acid research and molecular biology.

[47]  Samuel H. Wilson,et al.  Mammalian DNA β-polymerase in base excision repair of alkylation damage , 2001 .

[48]  S. H. Wilson,et al.  Mammalian DNA beta-polymerase in base excision repair of alkylation damage. , 2001, Progress in nucleic acid research and molecular biology.

[49]  Samuel H. Wilson,et al.  DNA polymerase β expression differences in selected human tumors and cell lines , 1999 .

[50]  S. H. Wilson,et al.  DNA polymerase beta expression differences in selected human tumors and cell lines. , 1999, Carcinogenesis.

[51]  G. Dianov,et al.  Repair Pathways for Processing of 8-Oxoguanine in DNA by Mammalian Cell Extracts* , 1998, The Journal of Biological Chemistry.

[52]  Y. Canitrot,et al.  Overexpression of DNA polymerase beta in cell results in a mutator phenotype and a decreased sensitivity to anticancer drugs. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[53]  D. Lane,et al.  Two Pathways for Base Excision Repair in Mammalian Cells (*) , 1996, The Journal of Biological Chemistry.

[54]  Y. Matsumoto,et al.  Excision of deoxyribose phosphate residues by DNA polymerase beta during DNA repair. , 1995, Science.

[55]  G. Dianov,et al.  Reconstitution of the DNA base excision—repair pathway , 1994, Current Biology.

[56]  K. Rajewsky,et al.  Deletion of a DNA polymerase beta gene segment in T cells using cell type-specific gene targeting. , 1994, Science.

[57]  T. Lindahl Repair of intrinsic DNA lesions. , 1990, Mutation research.

[58]  P. Volpe,et al.  Cell-cycle dependence and properties of the HeLa cell DNA polymerase system. , 1985, Proceedings of the National Academy of Sciences of the United States of America.