暂无分享,去创建一个
[1] Olivier Finkel,et al. The Complexity of Infinite Computations In Models of Set Theory , 2009, Log. Methods Comput. Sci..
[2] Filip Murlak,et al. On the topological complexity of tree languages , 2008, Logic and Automata.
[3] Ludwig Staiger. On the Power of Reading the Whole Infinite Input Tape , 1999, Grammars.
[4] Victor L. Selivanov,et al. Wadge degrees of ω-languages of deterministic Turing machines , 2003 .
[5] Jean-Eric Pin,et al. Infinite words - automata, semigroups, logic and games , 2004, Pure and applied mathematics series.
[6] Ines Klimann,et al. A Connected 3-State Reversible Mealy Automaton Cannot Generate an Infinite Burnside Group , 2014, DLT.
[7] Pierre Simonnet. Automates et theorie descriptive , 1992 .
[8] Thomas Wilke,et al. Automata logics, and infinite games: a guide to current research , 2002 .
[9] Calvin C. Elgot,et al. Review: George H. Mealy, A Method for Synthesizing Sequential Circuits , 1957 .
[10] Ludwig Staiger,et al. Topologies refining the Cantor topology on X ω , 2010 .
[11] Lawrence H. Landweber,et al. Decision problems forω-automata , 1969, Mathematical systems theory.
[12] Stevo Todorcevic,et al. BOREL CHROMATIC NUMBERS , 1999 .
[13] M. Lothaire. Algebraic Combinatorics on Words , 2002 .
[14] Thibault Godin,et al. On Torsion-Free Semigroups Generated by Invertible Reversible Mealy Automata , 2014, LATA.
[15] Ludwig Staiger,et al. Shift-invariant topologies for the Cantor space Xω , 2017, Theor. Comput. Sci..
[16] A. Kechris. Classical descriptive set theory , 1987 .
[17] I. Bondarenko,et al. On the conjugacy problem for finite-state automorphisms of regular rooted trees , 2010, 1011.2227.
[18] Ines Klimann,et al. Automaton Semigroups: The Two-state Case , 2016, Theory of Computing Systems.
[19] Thibault Godin,et al. Connected Reversible Mealy Automata of Prime Size Cannot Generate Infinite Burnside Groups , 2016, MFCS.
[20] Ievgen Bondarenko,et al. Finite-state self-similar actions of nilpotent groups , 2011, 1105.4969.
[21] Olivier Carton,et al. Polishness of Some Topologies Related to Automata , 2017, CSL.
[22] J. R. Büchi. On a Decision Method in Restricted Second Order Arithmetic , 1990 .
[23] Volker Diekert,et al. Fragments of First-Order Logic over Infinite Words , 2009, Theory of Computing Systems.
[24] Su Gao. Invariant Descriptive Set Theory , 2008 .
[25] Olivier Finkel,et al. The wadge hierarchy of Petri Nets ω-languages , 2014, Logic, Computation, Hierarchies.
[26] Olivier Finkel,et al. Borel ranks and Wadge degrees of context free $\omega$-languages , 2006, Mathematical Structures in Computer Science.
[27] Laurent Bartholdi,et al. Algorithmic Decidability of Engel's Property for Automaton Groups , 2015, CSR.
[28] Olivier Finkel,et al. Topology and Ambiguity in Omega Context Free Languages , 2008, ArXiv.
[29] Dominique Lecomte,et al. Potential Wadge Classes , 2010, 1002.1455.
[30] Rina S. Cohen,et al. omega-Computations on Turing Machines , 1978, Theor. Comput. Sci..
[31] Andrey Nikolaev,et al. Knapsack problems in products of groups , 2014, J. Symb. Comput..
[32] R. McNaughton. Review: J. Richard Buchi, Weak Second-Order Arithmetic and Finite Automata; J. Richard Buchi, On a Decision Method in Restricted second Order Arithmetic , 1963, Journal of Symbolic Logic.
[33] Wolfgang Thomas,et al. Automata on Infinite Objects , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.
[34] Wolfgang Thomas,et al. Logical Specifications of Infinite Computations , 1993, REX School/Symposium.
[35] Markus Lohrey,et al. Knapsack in graph groups, HNN-extensions and amalgamated products , 2016, STACS.
[36] Alain Louveau,et al. Ensembles analytiques et bor?eliens dans les espaces produit , 1980 .
[37] Équipe de Logique Mathématique. Classical and Effective Descriptive Complexities of ω-Powers , 2009 .
[38] Z. Sunic,et al. The conjugacy problem in automaton groups is not solvable , 2010, 1010.1993.
[39] Ludwig Staiger,et al. Subword Metrics for Infinite Words , 2015, CIAA.
[40] Y. Moschovakis. Descriptive Set Theory , 1980 .
[41] Victor L. Selivanov,et al. Wadge Reducibility and Infinite Computations , 2008, Math. Comput. Sci..
[42] Olivier Finkel,et al. Decision problems for Turing machines , 2009, Inf. Process. Lett..
[43] Olivier Serre. Games with Winning Conditions of High Borel Complexity , 2004, ICALP.
[44] Alain Louveau,et al. A Glimm-Effros dichotomy for Borel equivalence relations , 1990 .
[45] Dominique Lecomte,et al. A dichotomy characterizing analytic digraphs of uncountable Borel chromatic number in any dimension , 2007, 0707.1313.
[46] Christian Choffrut,et al. Uniformization of Rational Relations , 1999, Jewels are Forever.
[47] Said Sidki,et al. Automorphisms of one-rooted trees: Growth, circuit structure, and acyclicity , 2000 .
[48] Daniele D'Angeli,et al. Boundary action of automaton groups without singular points and Wang tilings , 2016, ArXiv.
[49] Markus Lohrey,et al. Knapsack and subset sum problems in nilpotent, polycyclic, and co-context-free groups , 2015, AMS-EMS-SPM Joint Meeting.
[50] M. Vorobets,et al. On a free group of transformations defined by an automaton , 2006, math/0601231.