A Framework for Decidable Metrical Logics

We propose a framework for defining decidable temporal logics. It is strong enough to define in it all the decidable temporal logics that we found in the literature. We use as semantics the standard model of the positive real line and we use robust logical notions and techniques.

[1]  T. Henzinger The Beneets of Relaxing Punctuality , 1996 .

[2]  Thomas A. Henzinger,et al.  The benefits of relaxing punctuality , 1991, PODC '91.

[3]  Alasdair Urquhart,et al.  Temporal Logic , 1971 .

[4]  Rajeev Alur,et al.  A Theory of Timed Automata , 1994, Theor. Comput. Sci..

[5]  C. A. R. Hoare,et al.  A Calculus of Durations , 1991, Inf. Process. Lett..

[6]  Pierre-Yves Schobbens,et al.  The Regular Real-Time Languages , 1998, ICALP.

[7]  Thomas Wilke,et al.  Specifying Timed State Sequences in Powerful Decidable Logics and Timed Automata , 1994, FTRTFT.

[8]  Anders P. Ravn,et al.  Specifying and Verifying Requirements of Real-Time Systems , 1993, IEEE Trans. Software Eng..

[9]  Alexander Moshe Rabinovich,et al.  Expressive Completeness of Duration Calculus , 2000, Inf. Comput..

[10]  Yoram Hirshfeld,et al.  Quantitative Temporal Logic , 1999, CSL.

[11]  Thomas A. Henzinger,et al.  Logics and Models of Real Time: A Survey , 1991, REX Workshop.

[12]  A. Ehrenfeucht An application of games to the completeness problem for formalized theories , 1961 .

[13]  M. Rabin Decidability of second-order theories and automata on infinite trees. , 1969 .

[14]  Peter Øhrstrøm,et al.  Temporal Logic , 1994, Lecture Notes in Computer Science.

[15]  Alexander Moshe Rabinovich,et al.  On expressive completeness of duration and mean value calculi , 1999, EXPRESS.

[16]  Johan Anthory Willem Kamp,et al.  Tense logic and the theory of linear order , 1968 .

[17]  S. Shelah The monadic theory of order , 1975, 2305.00968.

[18]  Anders P. Ravn,et al.  Specification Of Embedded, Real-time Systems , 1992, Fourth Euromicro workshop on Real-Time Systems.

[19]  M. Rabin Decidability of second-order theories and automata on infinite trees , 1968 .

[20]  Alexander Moshe Rabinovich,et al.  On the Decidability of Continuous Time Specification Formalisms , 1998, J. Log. Comput..