Mesh-Based Parametrized L-Systems and Generalized Subdivision for Generating Complex Geometry

We propose two mechanisms that can be used to generate complex geometry: generalized subdivision and mesh-based parametrized L-Systems. Instead of using standard subdivision, which uses the same subdivision rule at each level of the subdivision process, in order to converge to a limit surface, we employ a generalized approach, that allows different subdivision rules at each level. By limiting the variations at each level, it is possible to ensure convergence. Mesh-based parametrized L-Systems represent an extension to L-systems which associates symbols to the faces in a mesh. Thereby complex geometry can be introduced into an existing mesh by using procedural substitution rules. Combining both these mechanisms, a wide variety of complex models can be easily generated from very compact representations.

[1]  Ulrich Reif,et al.  A unified approach to subdivision algorithms near extraordinary vertices , 1995, Comput. Aided Geom. Des..

[2]  Henning Biermann,et al.  Piecewise smooth subdivision surfaces with normal control , 2000, SIGGRAPH.

[3]  Robert L. Cook,et al.  Shade trees , 1984, SIGGRAPH.

[4]  F. Kenton Musgrave,et al.  The synthesis and rendering of eroded fractal terrains , 1989, SIGGRAPH.

[5]  Jason Weber,et al.  Creation and rendering of realistic trees , 1995, SIGGRAPH.

[6]  R. Voss Random Fractal Forgeries , 1985 .

[7]  James T. Kajiya,et al.  Anisotropic reflection models , 1985, SIGGRAPH.

[8]  Donald S. Fussell,et al.  Computer rendering of stochastic models , 1982, Commun. ACM.

[9]  Przemyslaw Prusinkiewicz,et al.  Development models of herbaceous plants for computer imagery purposes , 1988, SIGGRAPH.

[10]  E. Catmull,et al.  Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .

[11]  Malcolm A. Sabin,et al.  Behaviour of recursive division surfaces near extraordinary points , 1998 .

[12]  Tony DeRose,et al.  Subdivision surfaces in character animation , 1998, SIGGRAPH.

[13]  Pat Hanrahan,et al.  Rendering complex scenes with memory-coherent ray tracing , 1997, SIGGRAPH.

[14]  A. Lindenmayer Mathematical models for cellular interactions in development. I. Filaments with one-sided inputs. , 1968, Journal of theoretical biology.

[15]  Radomír Mech,et al.  Visual models of plants interacting with their environment , 1996, SIGGRAPH.

[16]  Jos Stam,et al.  Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values , 1998, SIGGRAPH.

[17]  Jörg Peters,et al.  Patching Catmull-Clark meshes , 2000, SIGGRAPH.

[18]  Aristid Lindenmayer,et al.  Mathematical Models for Cellular Interactions in Development , 1968 .

[19]  Hugues Hoppe,et al.  Displaced subdivision surfaces , 2000, SIGGRAPH.

[20]  Jules Bloomenthal,et al.  Modeling the mighty maple , 1985, SIGGRAPH.

[21]  Malcolm A. Sabin,et al.  Non-uniform recursive subdivision surfaces , 1998, SIGGRAPH.

[22]  Robert L. Cook,et al.  The Reyes image rendering architecture , 1987, SIGGRAPH.

[23]  Peter Schröder,et al.  Multiresolution signal processing for meshes , 1999, SIGGRAPH.

[24]  Oliver Deussen,et al.  A Modelling Method and User Interface for Creating Plants , 1997, Comput. Graph. Forum.