Hydrogen fuel rocket engines simulation using LOGOS code

Abstract Computer aided design of new effective and clean hydrogen rocket engines needs mathematical tools for supercomputer modeling of hydrogen–oxygen components mixing and chemically reacting in rocket combustion chambers. The paper presents the results of computer code developing, verification and validation, making it possible to simulate unsteady processes of ignition and combustion of hydrogen fuel in rocket engines. Restrictions on unsteady gas dynamics working cycles supercomputer simulations due to accumulations of errors are developed.

[1]  Ulrich Maas,et al.  Simplifying chemical kinetics: Intrinsic low-dimensional manifolds in composition space , 1992 .

[2]  Nickolay Smirnov,et al.  A study of deflagration and detonation in multiphase hydrocarbon-air mixtures , 1994 .

[3]  V. F. Nikitin,et al.  The influence of confinement geometry on deflagration to detonation transition in gases , 2002 .

[4]  Nickolay Smirnov,et al.  Theoretical and experimental investigation of combustion to detonation transition in chemically active gas mixtures in closed vessels , 1997 .

[5]  Vigor Yang,et al.  Validation of High-Fidelity CFD Simulations for Rocket Injector Design , 2008 .

[6]  Nickolay Smirnov,et al.  Modeling and simulation of hydrogen combustion in engines , 2014 .

[7]  G. Batchelor,et al.  An Introduction to Fluid Dynamics , 1968 .

[8]  Forman A. Williams,et al.  The asymptotic structure of stoichiometric methaneair flames , 1987 .

[9]  Nickolay Smirnov,et al.  Investigation of Self-Sustaining Waves in Metastable Systems: Deflagration-to-Detonation Transition , 2009 .

[10]  Nickolay Smirnov,et al.  Onset of detonation in polydispersed fuel–air mixtures , 2007 .

[11]  C. F. Curtiss,et al.  Molecular Theory Of Gases And Liquids , 1954 .

[12]  木原 太郎 J. O. Hirschfeldie, C. F. Curtiss, R. B. Bird: Molecular Theory of Gases and Liquids, Wiley, New York. 1954, 1219ページ, 15×23cm. 20ドル. , 1954 .

[13]  V. B. Betelin,et al.  Mathematical simulation of hydrogen–oxygen combustion in rocket engines using LOGOS code , 2014 .

[14]  Nickolay Smirnov,et al.  Effect of Channel Geometry and Mixture Temperature on Detonation‐to‐Deflagration Transition in Gases , 2004 .

[15]  Nickolay Smirnov,et al.  Unsteady-state turbulent diffusive combustion in confined volumes , 1997 .

[16]  V. B. Betelin,et al.  Supercomputer modeling of hydrogen combustion in rocket engines , 2013 .

[17]  Mikhail V. Silnikov,et al.  Thermo-Gas Dynamics of Hydrogen Combustion and Explosion , 2012 .

[18]  Ulrich Maas,et al.  Ignition processes in hydrogenoxygen mixtures , 1988 .

[19]  V. F. Nikitin,et al.  Pulse detonation engines: Technical approaches , 2009 .

[20]  M. V. Silnikov,et al.  On some conditions for detonation initiation downstream of a perforated plate , 2013 .

[21]  V. S. Babkin Fast gas combustion in systems with hydraulic resistance , 2012 .

[22]  Genny A. Pang,et al.  Experimental study and modeling of shock tube ignition delay times for hydrogen–oxygen–argon mixtures at low temperatures , 2009 .

[23]  Dudley Brian Spalding,et al.  Heat transfer from turbulent separated flows , 1967, Journal of Fluid Mechanics.

[24]  M. V. Chernyshov,et al.  On the efficiency of semi-closed blast inhibitors , 2010 .

[25]  Nickolay Smirnov,et al.  Microgravity investigation of laminar flame propagation in monodisperse gas droplet mixtures , 2007 .

[26]  V. A. Nerchenko,et al.  Fluid mechanics of pulse detonation thrusters , 2012 .