Adelic Multiresolution Analysis, Construction of Wavelet Bases and Pseudo-Differential Operators

In our previous paper, the Haar multiresolution analysis (MRA) $\{V_{j}\}_{j\in \mathbb {Z}}$ in $L^{2}(\mathbb {A})$ was constructed, where $\mathbb {A}$ is the adele ring. Since $L^{2}(\mathbb {A})$ is the infinite tensor product of the spaces $L^{2}({\mathbb {Q}}_{p})$, p=∞,2,3,…, the adelic MRA has some specific properties different from the corresponding finite-dimensional ones. Nevertheless, this infinite-dimensional MRA inherits almost all basic properties of the finite-dimensional case. In this paper we derive explicit formulas for bases in Vj, $j\in \mathbb {Z}$, and for the wavelet bases generated by the above-mentioned adelic MRA. In view of the specific properties of the adelic MRA, there arise some technical problems in the construction of wavelet bases. These problems were solved with the aid of the operator formalization of the process of generation of wavelet bases. We study the spectral properties of the fractional operator introduced by S. Torba and W.A. Zúñiga-Galindo. We prove that the constructed wavelet functions are eigenfunctions of this fractional operator. This paper, as well as our previous paper, introduces new ideas to construct different infinite-dimensional MRAs. Our results can be used in the theory of adelic pseudo-differential operators and equations over the ring of adeles and in adelic models in physics.

[1]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[2]  Andrei Khrennikov,et al.  Theory of P-Adic Distributions: Linear and Nonlinear Models , 2010 .

[3]  WEAK SOLUTIONS OF STOCHASTIC DIFFERENTIAL EQUATIONS OVER THE FIELD OF $p$-ADIC NUMBERS , 2007, 0708.1706.

[4]  A. Khrennikov,et al.  p-Adic orthogonal wavelet bases , 2009 .

[5]  W. A. Zuniga-Galindo Fundamental Solutions of Pseudo-Differential Operators over p-Adic Fields. , 2003 .

[6]  Andrei Khrennikov,et al.  p-Adic Valued Distributions in Mathematical Physics , 1994 .

[7]  W. A. Zúñiga-Galindo Parabolic Equations and Markov Processes Over p-Adic Fields , 2006 .

[8]  W. A. Zúñiga-Galindo,et al.  Taibleson operators, p-adic parabolic equations and ultrametric diffusion , 2007, 0712.1018.

[9]  S. Samko Hypersingular Integrals and Their Applications , 2001 .

[10]  V. M. Shelkovich,et al.  Wavelet Analysis on Adeles and Pseudo-Differential Operators , 2011, 1107.1700.

[11]  I. Volovich,et al.  On the adelic string amplitudes , 1988 .

[12]  Graded tensor products and the problem of tensor grade computation and reduction , 2012 .

[13]  Anatoly N. Kochubei,et al.  A non-Archimedean wave equation , 2007, 0707.2653.

[14]  I︠u︡. M. Berezanskiĭ Selfadjoint operators in spaces of functions of infinitely many variables , 1986 .

[15]  Anatoly N. Kochubei,et al.  Pseudo-differential equations and stochastics over non-archimedean fields , 2001 .

[16]  On generalized functions in adelic quantum mechanics , 1998, math-ph/0404076.

[17]  J. Neumann On infinite direct products , 1939 .

[18]  A. Khrennikov,et al.  Beyond Archimedean Space‐Time Structure , 2011 .

[19]  M. H. Taibleson,et al.  Fourier Analysis on Local Fields. , 1975 .

[20]  Sergei Kozyrev,et al.  Wavelet analysis as a p-adic spectral analysis , 2008 .

[21]  On adelic model of boson Fock space. , 2007 .

[22]  Y. Manin REFLECTIONS ON ARITHMETICAL PHYSICS**Dedicated to Alexander Grothendieck on his 60th birthday. , 1989 .

[23]  Сергей Владимирович Козырев,et al.  Теория всплесков как $p$-адический спектральный анализ@@@Wavelet theory as $p$-adic spectral analysis , 2002 .

[24]  A. Kochubei Schrödinger-type operator over p-adic number field , 1991 .

[25]  卓也 石井 D. Goldfeld and J. Hundley: Automorphic Representations and L-functions for the General Linear Group, vol. I, II, Cambridge Stud. Adv. Math., 129, 130, Cambridge Univ. Press,2011年,xx+550ページ,xx+188ページ. , 2014 .

[26]  P. Freund,et al.  p-adic numbers in physics , 1993 .

[27]  A. Khrennikov,et al.  Distributions on adeles , 2007 .

[28]  D. Goldfeld,et al.  Automorphic Representations and L-Functions for the General Linear Group , 2011 .

[29]  $p$-Adic multidimensional wavelets and their application to $p$-adic pseudo-differential operators , 2006, math-ph/0612049.

[30]  Stephan Dahlke Multiresolution analysis and wavelets on locally compact abelian groups , 1994 .

[31]  W. A. Zúñiga-Galindo,et al.  Parabolic Type Equations and Markov Stochastic Processes on Adeles , 2012, 1206.5213.

[32]  V. M. Shelkovich,et al.  p-Adic Haar Multiresolution Analysis and Pseudo-Differential Operators , 2007, 0705.2294.

[33]  M. Reed Methods of Modern Mathematical Physics. I: Functional Analysis , 1972 .

[34]  Sergio Albeverio,et al.  The Cauchy problems for evolutionary pseudo-differential equations over p-adic field and the wavelet theory , 2011 .

[35]  S. Albeverio,et al.  p-Adic Multiresolution Analysis and Wavelet Frames , 2008, 0802.1079.