Energy confinement and thermal transport characteristics of net current free plasmas in the Large Helical Device

The energy confinement and thermal transport characteristics of net current free plasmas in regimes with much smaller gyroradii and collisionality than previously studied have been investigated in the Large Helical Device (LHD). The inward shifted configuration, which is superior from the point of view of neoclassical transport theory, has revealed a systematic confinement improvement over the standard configuration. Energy confinement times are improved over the International Stellarator Scaling 95 by a factor of 1.6 ± 0.2 for an inward shifted configuration. This enhancement is primarily due to the broad temperature profile with a high edge value. A simple dimensional analysis involving LHD and other medium sized heliotrons yields a strongly gyro-Bohm dependence (T E Ω ρ *-3.8 ) of energy confinement times. It should be noted that this result is attributed to a comprehensive treatment of LHD for systematic confinement enhancement and that the medium sized heliotrons have narrow temperature profiles. The core stored energy still indicates a dependence of T E Ω ρ *-2.6 when data only from LIED are processed. The local heat transport analysis of discharges dimensionally similar except for ρ * suggests that the heat conduction coefficient lies between Bohm and gyro-Bohm in the core and changes towards strong gyro-Bohm in the peripheral region. Since the inward shifted configuration has a geometrical feature suppressing neoclassical transport, confinement improvement can be maintained in the collisionless regime where ripple transport is important. The stiffness of the pressure profile coincides with enhanced transport in the peaked density profile obtained by pellet injection.

N Inoue | K Nishimura | T Tokuzawa | S Yamaguchi | H Funaba | M Isobe | K. Kawahata | S. Murakami | A. Sagara | T. Morisaki | R. Sakamoto | O. Motojima | K. Watanabe | N. Ohyabu | T. Mutoh | R. Kumazawa | S. Masuzaki | T. Seki | J. Miyazawa | M. Goto | B. Peterson | N. Ashikawa | K. Saito | S. Sakakibara | T. Tokuzawa | Y. Nakamura | K. Narihara | I. Yamada | A. Komori | K. Yamazaki | M. Fujiwara | T. Satow | T. Uda | G. Rewoldt | K. Khlopenkov | M. Emoto | H. Funaba | H. Idei | S. Kado | O. Kaneko | S. Kubo | T. Minami | S. Muto | Y. Nagayama | H. Nakanishi | N. Noda | T. Kobuchi | S. Ohdachi | Y. Oka | M. Osakabe | T. Ozaki | H. Sasao | M. Sasao | M. Sato | T. Shimozuma | H. Suzuki | Y. Takeiri | K. Toi | K. Tsumori | S. Yamaguchi | M. Yokoyama | T. Watari | N. Inoue | Y. Hamada | K. Ohkubo | I. Ohtake | S. Sudo | S. Tanahashi | S. Satoh | M. Takechi | Y. Yoshimura | T. Notake | R. Pavlichenko | K. Ida | Y. Liang | H. Sugama | N. Nakajima | K. Itoh | K. Tanaka | N. Tamura | S. Inagaki | M. Isobe | M. Shoji | K Itoh | K Matsuoka | T Minami | Y Yoshimura | K Ida | K Toi | H Sugama | S. Morita | S Morita | H Yamada | I Yamada | K Kawahata | Y. Torii | K. Matsuoka | K. Ikeda | S. Yamamoto | Kuninori Sato | M Emoto | Y Nagayama | T Notake | K Tanaka | Y Liang | S Masuzaki | N Ohyabu | T Kobuchi | Y Takeiri | H Sasao | G Rewoldt | K.Y Watanabe | K Yamazaki | S Murakami | S Sakakibara | K Narihara | M Osakabe | N Ashikawa | P.C. De Vries | M Goto | H Idei | K Ikeda | S Inagaki | S Kado | O Kaneko | K Khlopenkov | A Komori | S Kubo | R Kumazawa | J Miyazawa | T Morisaki | S Muto | T Mutoh | N Nakajima | Y Nakamura | H Nakanishi | N Noda | S Ohdachi | Y Oka | T Ozaki | R.O Pavlichenko | B.J Peterson | A Sagara | K Saito | R Sakamoto | M Sasao | K Sato | M Sato | T Seki | T Shimozuma | M Shoji | H Suzuki | M Takechi | N Tamura | Y Torii | K Tsumori | S Yamamoto | M Yokoyama | T Watari | K Ohkubo | I Ohtake | S Satoh | T Satow | S Sudo | S Tanahashi | T Uda | Y Hamada | O Motojima | M Fujiwara | H. Yamada | P. Vries | K. Nishimura | K. Saito

[1]  K. Yamazaki,et al.  Plasma transport simulation modelling for helical confinement systems , 1991 .

[2]  Murakami,et al.  Edge thermal transport barrier In LHD discharges , 2000, Physical review letters.

[3]  W. Kerner,et al.  Plasma confinement in JET H?mode plasmas with H, D, DT and T isotopes , 1999 .

[4]  Stroth,et al.  Dimensionally similar discharges in the W7-AS stellarator. , 1993, Physical review letters.

[5]  P. W. Fisher,et al.  Development of pellet injector system for large helical device , 2000 .

[6]  Drift mode calculations for the Large Helical Device , 2000 .

[7]  C. D. Beidler,et al.  Density control problems in large stellarators with neoclassical transport , 1999 .

[8]  Evidence for a local diffusive model of transport in a tokamak , 1992 .

[9]  Murakami,et al.  Energy confinement time and heat transport in initial neutral beam heated plasmas on the large helical device , 2000, Physical review letters.

[10]  Masao Okamoto,et al.  Finite β Effects on the ICRF and NBI Heating in the Large Helical Device , 1995 .

[11]  S. Zoletnik,et al.  Electric Field and Transport in W7-AS , 1999 .

[12]  M. Shoji,et al.  An Overview of the Large Helical Device Project , 1998 .

[13]  T. K. Chu,et al.  Class of model stellarator fields with enhanced confinement , 1982 .

[14]  R. A. Dory,et al.  SPECIAL TOPIC: Energy confinement scaling from the international stellarator database , 1995 .

[15]  W. Horton,et al.  Initial Value Problem of the Toroidal Ion Temperature Gradient Mode , 1998 .

[16]  J. C. DeBoo,et al.  Modelling of almost dimensionally similar discharges , 1992 .

[17]  T. K. Chu,et al.  Overview of TFTR transport studies , 1991 .

[18]  P. C. de Vries,et al.  Impact of pellet injection on extension of the operational region in LHD , 2000 .