Running vacuum in QFT in FLRW spacetime: The dynamics of $\rho_{\rm vac}(H)$ from the quantized matter fields

Phenomenological work in the last few years has provided significant support to the idea that the vacuum energy density (VED) is a running quantity with the cosmological evolution and that this running helps to alleviate the cosmological tensions afflicting the $\Lambda$CDM. On the theoretical side, recent devoted studies have shown that the properly renormalized $\rho_{\rm vac}$ in QFT in FLRW spacetime adopts the"running vacuum model"(RVM) form. While in three previous studies by two of us (CMP and JSP) such computations focused solely on scalar fields non-minimally coupled to gravity, in the present work we compute the spin-$1/2$ fermionic contributions and combine them both. The calculation is performed using a new version of the adiabatic renormalization procedure based on subtracting the UV divergences at an off-shell renormalization point $M$. The quantum scaling of $\rho_{\rm vac}$ with $M$ turns into cosmic evolution with the Hubble rate, $H$. As a result the"cosmological constant"$\Lambda$ appears in our framework as the nearly sustained value of $8\pi G(H)\rho_{\rm vac}(H)$ around (any) given epoch $H$, where $G(H)$ is the gravitational coupling, which is also running, although very mildly (logarithmically). We find that the VED evolution at present reads $\delta \rho_{\rm vac}(H)\sim \nu_{\rm eff}\, m_{\rm Pl}^2 \left(H^2-H_0^2 \right)\ (|\nu_{\rm eff}|\ll 1)$. The coefficient $\nu_{\rm eff}$ receives contributions from all the quantized fields, bosons and fermions. Remarkably, there also exist higher powers ${\cal O}(H^{6})$ which can trigger inflation in the early universe. Finally, the equation of state (EoS) of the vacuum receives also quantum corrections from bosons and fermion fields, shifting its value from -1. The striking consequence is that the EoS of the quantum vacuum may nowadays effectively appears as quintessence.

[1]  G. Lambiase,et al.  The Hubble constant tension: current status and future perspectives through new cosmological probes , 2023, Proceedings of Corfu Summer Institute 2022 "School and Workshops on Elementary Particle Physics and Gravity" — PoS(CORFU2022).

[2]  N. Mavromatos Anomalies, the Dark Universe and Matter-Antimatter asymmetry , 2022, Journal of Physics: Conference Series.

[3]  Joan Peracaula Sola Running Vacuum and the ΛCDM tensions , 2022, Proceedings of Corfu Summer Institute 2021 "School and Workshops on Elementary Particle Physics and Gravity" — PoS(CORFU2021).

[4]  B. Ward Current Status of Resummed Quantum Gravity , 2022, Proceedings of 41st International Conference on High Energy physics — PoS(ICHEP2022).

[5]  X. Calmet,et al.  Quantum Hair in Electrodynamics and Gravity , 2022, 2209.12798.

[6]  J. Peracaula,et al.  Running vacuum versus holographic dark energy: a cosmographic comparison , 2022, The European Physical Journal C.

[7]  Cristian Moreno-Pulido,et al.  Equation of state of the running vacuum , 2022, The European Physical Journal C.

[8]  A. Ferreiro,et al.  Adiabatic regularization and preferred vacuum state for the λϕ4 field theory in cosmological spacetimes , 2022, Physical Review D.

[9]  H. Firouzjahi Cosmological constant and vacuum zero point energy in black hole backgrounds , 2022, Physical Review D.

[10]  E. Mottola The effective theory of gravity and dynamical vacuum energy , 2022, Journal of High Energy Physics.

[11]  J. Peracaula,et al.  The cosmological constant problem and running vacuum in the expanding universe , 2022, Philosophical Transactions of the Royal Society A.

[12]  Ryan E. Keeley,et al.  Cosmology Intertwined: A Review of the Particle Physics, Astrophysics, and Cosmology Associated with the Cosmological Tensions and Anomalies , 2022, Journal of High Energy Astrophysics.

[13]  Cristian Moreno-Pulido,et al.  Renormalizing the vacuum energy in cosmological spacetime: implications for the cosmological constant problem , 2022, The European Physical Journal C.

[14]  M. Turner The Road to Precision Cosmology , 2022, 2201.04741.

[15]  H. Firouzjahi Cosmological constant problem on the horizon , 2022, Physical Review D.

[16]  E. Saridakis,et al.  Big bang nucleosynthesis constraints on higher-order modified gravities , 2021, Physical Review D.

[17]  E. A. Curtis,et al.  Measuring the stability of fundamental constants with a network of clocks , 2021, EPJ Quantum Technology.

[18]  X. Calmet,et al.  Quantum hair and black hole information , 2021, Physics Letters B.

[19]  David O. Jones,et al.  A Comprehensive Measurement of the Local Value of the Hubble Constant with 1 km s−1 Mpc−1 Uncertainty from the Hubble Space Telescope and the SH0ES Team , 2021, The Astrophysical Journal Letters.

[20]  S. Adler Is “dark energy” a quantum vacuum energy? , 2021, Modern Physics Letters A.

[21]  J. J. Relancio,et al.  Quantum gravity phenomenology at the dawn of the multi-messenger era—A review , 2021, Progress in Particle and Nuclear Physics.

[22]  N. Mavromatos Geometrical origins of the universe dark sector: string-inspired torsion and anomalies as seeds for inflation and dark matter , 2021, Philosophical Transactions of the Royal Society A.

[23]  Zhen Zhang Geometrization of light bending and its application to SdS w spacetime , 2021, Classical and Quantum Gravity.

[24]  J. Solà,et al.  Cosmographic approach to Running Vacuum dark energy models: new constraints using BAOs and Hubble diagrams at higher redshifts , 2021, 2108.06255.

[25]  J. P'erez Implications of Dynamical Dark Energy in the expansion of the Universe and the Structure Formation , 2021, 2105.14800.

[26]  N. Mavromatos,et al.  Inflationary physics and trans-Planckian conjecture in the stringy running vacuum model: from the phantom vacuum to the true vacuum , 2021, The European Physical Journal Plus.

[27]  J. Navarro-Salas,et al.  Renormalization, running couplings, and decoupling for the Yukawa model in a curved spacetime , 2021, Physical Review D.

[28]  Cristian Moreno-Pulido,et al.  Running vacuum against the H 0 and σ8 tensions , 2021, EPL (Europhysics Letters).

[29]  N. Mavromatos,et al.  Stringy-running-vacuum-model inflation: from primordial gravitational waves and stiff axion matter to dynamical dark energy , 2020, The European Physical Journal Special Topics.

[30]  Lu Zhang,et al.  Anomalies , 2005, Introduction to the Standard Model and Beyond.

[31]  F. Patras,et al.  Renormalization , 2021, Algebra and Applications.

[32]  Tristan L. Smith,et al.  Cosmology Intertwined II: The Hubble Constant Tension , 2020, 2008.11284.

[33]  N. Mavromatos,et al.  Quantum anomalies in string-inspired running vacuum universe: Inflation and axion dark matter , 2020, Physics Letters B.

[34]  Hao-Ran Yu,et al.  Particle and entropy production in the running vacuum universe , 2019, General Relativity and Gravitation.

[35]  N. Mavromatos,et al.  Gravitational and chiral anomalies in the running vacuum universe and matter-antimatter asymmetry , 2019, Physical Review D.

[36]  T. Peters Gravitation , 2018, PHYSIK.

[37]  Cristian Moreno-Pulido,et al.  Running vacuum in quantum field theory in curved spacetime: renormalizing ρ v ac without ∼ m 4 terms , 2020 .

[38]  M. Malekjani,et al.  Can dark energy be expressed as a power series of the Hubble parameter? , 2019, Physical Review D.

[39]  A. Riess,et al.  Large Magellanic Cloud Cepheid Standards Provide a 1% Foundation for the Determination of the Hubble Constant and Stronger Evidence for Physics beyond ΛCDM , 2019, The Astrophysical Journal.

[40]  J. Navarro-Salas,et al.  Running couplings from adiabatic regularization , 2018, Physics Letters B.

[41]  M. Turner $$\Lambda $$ΛCDM: Much More Than We Expected, but Now Less Than What We Want , 2018, Foundations of Physics.

[42]  J. Navarro-Salas,et al.  Adiabatic expansions for Dirac fields, renormalization, and anomalies , 2018, Physical Review D.

[43]  Shinji Tsujikawa,et al.  Dark Energy: Theory and Observations , 2018 .

[44]  J. Peracaula,et al.  Density perturbations for running vacuum: a successful approach to structure formation and to the σ8-tension , 2018, 1801.08501.

[45]  David O. Jones,et al.  The Complete Light-curve Sample of Spectroscopically Confirmed SNe Ia from Pan-STARRS1 and Cosmological Constraints from the Combined Pantheon Sample , 2017, The Astrophysical Journal.

[46]  K. Kohri,et al.  Electroweak vacuum instability and renormalized vacuum field fluctuations in Friedmann-Lemaitre-Robertson-Walker background , 2017, Physical Review D.

[47]  J. Peracaula,et al.  Possible signals of vacuum dynamics in the Universe , 2017, 1703.08218.

[48]  A. Gómez-Valent,et al.  Dynamical dark energy vs. Λ = const in light of observations , 2016, 1606.00450.

[49]  H. Padmanabhan,et al.  Quantum gravity at Hubble scales determines the cosmological constant and the amplitude of primordial perturbations , 2017 .

[50]  J. Solà,et al.  Relaxing the σ8-tension through running vacuum in the Universe , 2017, 1711.00692.

[51]  Adria G'omez-Valent Vacuum energy in Quantum Field Theory and Cosmology , 2017, 1710.01978.

[52]  X. Calmet Cosmological evolution of the Higgs boson’s vacuum expectation value , 2017, The European Physical Journal C.

[53]  J. Solà,et al.  The H 0 tension in light of vacuum dynamics in the universe , 2017, 1705.06723.

[54]  J. Solà,et al.  First Evidence of Running Cosmic Vacuum: Challenging the Concordance Model , 2016, 1602.02103.

[55]  K. Kohri,et al.  Cosmological constant problem and renormalized vacuum energy density in curved background , 2016, 1612.08818.

[56]  H. Fritzsch,et al.  Running vacuum in the Universe and the time variation of the fundamental constants of Nature , 2016, 1605.06104.

[57]  T. Padmanabhan The Atoms Of Space, Gravity and the Cosmological Constant , 2016, 1603.08658.

[58]  S. Capozziello,et al.  f(T) teleparallel gravity and cosmology , 2015, Reports on progress in physics. Physical Society.

[59]  Birgit Wirtz,et al.  Principles Of Physical Cosmology , 2016 .

[60]  J. Solà,et al.  HINTS OF DYNAMICAL VACUUM ENERGY IN THE EXPANDING UNIVERSE , 2015, 1506.05793.

[61]  H. Fritzsch,et al.  Fundamental constants and cosmic vacuum: the micro and macro connection , 2015, 1502.01411.

[62]  S. Basilakos,et al.  Dynamical vacuum energy in the expanding Universe confronted with observations: a dedicated study , 2014, 1409.7048.

[63]  F. Torrenti,et al.  Renormalized stress-energy tensor for spin-1/2 fields in expanding universes , 2014, 1407.5058.

[64]  J. Solà Vacuum energy and cosmological evolution , 2014, 1402.7049.

[65]  Aitor Landete,et al.  Adiabatic regularization and particle creation for spin one-half fields , 2013, 1311.4958.

[66]  J. Solà Cosmological constant and vacuum energy: old and new ideas , 2013, 1306.1527.

[67]  B. Ward An estimate of Λ in resummed quantum gravity in the context of asymptotic safety , 2013 .

[68]  Aitor Landete,et al.  Adiabatic regularization for spin-1/2 fields , 2013, 1305.7374.

[69]  S. Basilakos,et al.  Expansion History with Decaying Vacuum: A Complete Cosmological Scenario , 2012, 1209.2802.

[70]  S. Basilakos,et al.  Complete cosmic history with a dynamical 1⁄4 ð H Þ term , 2013 .

[71]  H. Fritzsch,et al.  Matter non-conservation in the universe and dynamical dark energy , 2012, 1202.5097.

[72]  W. Marsden I and J , 2012 .

[73]  B. Sahely The Atoms of Space , 2011 .

[74]  S. Capozziello,et al.  Extended Theories of Gravity , 2011, 1108.6266.

[75]  L. Parker,et al.  Remarks on the renormalization of primordial cosmological perturbations , 2011, 1108.0949.

[76]  N. Bilić Vacuum fluctuations in a supersymmetric model in FRW spacetime , 2011, 1104.1349.

[77]  J. Solà Cosmologies with a time dependent vacuum , 2011, 1102.1815.

[78]  M. Maggiore Zero-point quantum fluctuations and dark energy , 2010, 1004.1782.

[79]  M. Pollock On the Dirac equation in curved space-time , 2010 .

[80]  L. Parker,et al.  Revising the observable consequences of slow-roll inflation , 2009, 0911.0961.

[81]  T. Sotiriou,et al.  f(R) Theories Of Gravity , 2008, 0805.1726.

[82]  F. Finster,et al.  The Dirac equation and the normalization of its solutions in a closed Friedmann– Robertson–Walker universe , 2009, 0901.0602.

[83]  J. Solà Dark energy: a quantum fossil from the inflationary universe? , 2007, 0710.4151.

[84]  Luca Grisa Beyond Einstein gravity , 2008 .

[85]  S. Capozziello,et al.  Extended theories of gravity and their cosmological and astrophysical applications , 2007, 0706.1146.

[86]  野村 英史 Black holes in quantum gravity , 2007 .

[87]  John G. Barrow Varying constants , 2005, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[88]  R. Nichol,et al.  Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies , 2005, astro-ph/0501171.

[89]  Lee Smolin,et al.  How far are we from the quantum theory of gravity , 2003, hep-th/0303185.

[90]  T. Padmanabhan Cosmological constant—the weight of the vacuum , 2002, hep-th/0212290.

[91]  P. Peebles,et al.  The Cosmological Constant and Dark Energy , 2002, astro-ph/0207347.

[92]  X. Calmet,et al.  The cosmological evolution of the nucleon mass and the electroweak coupling constants , 2001, hep-ph/0112110.

[93]  I. Hook,et al.  Measurements of Ω and Λ from 42 High-Redshift Supernovae , 1998, astro-ph/9812133.

[94]  A. Riess,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.

[95]  L. Krauss,et al.  The cosmological constant is back , 1995, astro-ph/9504003.

[96]  Paul J. Steinhardt,et al.  The observational case for a low-density Universe with a non-zero cosmological constant , 1995, Nature.

[97]  直樹 武川,et al.  Regularization , 2019, Encyclopedia of Continuum Mechanics.

[98]  V. Villalba,et al.  Separation of variables and exact solution to Dirac and Weyl equations in Robertson–Walker space‐times , 1990 .

[99]  S. Fulling Aspects of Quantum Field Theory in Curved Space-Time: Quantization of a static, scalar field theory , 1989 .

[100]  Barut,et al.  Exact solutions of the Dirac equation in spatially flat Robertson-Walker space-times. , 1987, Physical review. D, Particles and fields.

[101]  I. Antoniadis,et al.  On the cosmological constant problem , 1984 .

[102]  M. Duff,et al.  Quantizing gravity with a cosmological constant , 1980 .

[103]  L. Parker,et al.  One-electron atom as a probe of space-time curvature , 1980 .

[104]  T. S. Bunch Adiabatic regularisation for scalar fields with arbitrary coupling to the scalar curvature , 1980 .

[105]  A. Starobinsky,et al.  A new type of isotropic cosmological models without singularity , 1980 .

[106]  L. Parker,et al.  Feynman propagator in curved spacetime: A momentum-space representation , 1979 .

[107]  M. Duff,et al.  New gravitational index theorems and super theorems , 1979 .

[108]  L. Parker Aspects of Quantum Field Theory in Curved Space-Time: Effective Action and Energy-Momentum Tensor , 1979 .

[109]  C. R. Dutton,et al.  Energy-momentum tensor and definition of particle states for Robertson-Walker space-times , 1978 .

[110]  M. Duff,et al.  Axial and conformal anomalies for arbitrary spin in gravity and supergravity , 1978 .

[111]  N. D. Birrell The application of adiabatic regularization to calculations of cosmological interest , 1978, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[112]  S. Christensen Regularization, renormalization, and covariant geodesic point separation , 1978 .

[113]  P. Davies,et al.  Quantum field theory in curved space–time , 1976, Nature.

[114]  T. Appelquist,et al.  Infrared Singularities and Massive Fields , 1975 .

[115]  B. Zumino Supersymmetry and the vacuum , 1975 .

[116]  L. Parker,et al.  Conformal energy-momentum tensor in curved spacetime: Adiabatic regularization and renormalization , 1974 .

[117]  G. W. Horndeski Second-order scalar-tensor field equations in a four-dimensional space , 1974 .

[118]  L. Parker,et al.  Renormalization in the theory of a quantized scalar field interacting with a robertson-walker spacetime☆ , 1974 .

[119]  B. Zumino,et al.  Supergauge Transformations in Four-Dimensions , 1974 .

[120]  L. Parker,et al.  Adiabatic regularization of the energy momentum tensor of a quantized field in homogeneous spaces , 1974 .

[121]  L. Parker,et al.  QUANTIZED FIELDS AND PARTICLE CREATION IN EXPANDING UNIVERSES. II. , 1969 .

[122]  Y. Zel’dovich Cosmological Constant and Elementary Particles , 1967 .