The quest for minimal quotients for probabilistic and Markov automata

Abstract One of the prevailing ideas in applied concurrency theory and verification is the concept of automata minimization with respect to strong or weak bisimilarity. The minimal automata can be seen as canonical representations of the behaviour modulo the bisimilarity considered. Together with congruence results wrt. process algebraic operators, this can be exploited to alleviate the notorious state space explosion problem. In this paper, we aim at identifying minimal automata and canonical representations for concurrent probabilistic models. We present minimality and canonicity results for probabilistic and Markov automata modulo strong and weak probabilistic bisimilarity, together with the corresponding minimization algorithms. We also consider weak distribution bisimilarity, originally proposed for Markov automata. For this relation, the quest for minimality does not have a unique answer, since fanout minimality clashes with state and transition minimality. We present an SMT approach to enumerate fanout-minimal models.

[1]  Nancy A. Lynch,et al.  Observing Branching Structure through Probabilistic Contexts , 2007, SIAM J. Comput..

[2]  Joost-Pieter Katoen,et al.  Automated compositional Markov chain generation for a plain-old telephone system , 2000, Sci. Comput. Program..

[3]  Jan A. Bergstra,et al.  A complete inference system for rgular processes with silent moves , 1984 .

[4]  Lijun Zhang,et al.  When Equivalence and Bisimulation Join Forces in Probabilistic Automata , 2014, FM.

[5]  W. Marsden I and J , 2012 .

[6]  Lijun Zhang,et al.  Deciding Bisimilarities on Distributions , 2013, QEST.

[7]  Christel Baier,et al.  Weak Bisimulation for Fully Probabilistic Processes , 1997, FBT.

[8]  Nancy A. Lynch,et al.  Probabilistic Simulations for Probabilistic Processes , 1994, Nord. J. Comput..

[9]  Azaria Paz,et al.  Probabilistic automata , 2003 .

[10]  Jan A. Bergstra,et al.  Algebra of Communicating Processes with Abstraction , 1985, Theor. Comput. Sci..

[11]  Laurent Mounier,et al.  A Tool Set for deciding Behavioral Equivalences , 1991, CONCUR.

[12]  Roberto Segala Probability and Nondeterminism in Operational Models of Concurrency , 2006, CONCUR.

[13]  Roberto Segala,et al.  Modeling and verification of randomized distributed real-time systems , 1996 .

[14]  Lijun Zhang,et al.  Concurrency and Composition in a Stochastic World , 2010, CONCUR.

[15]  Yi Li,et al.  iscasMc: A Web-Based Probabilistic Model Checker , 2014, FM.

[16]  Joost-Pieter Katoen,et al.  Modelling, Reduction and Analysis of Markov Automata (extended version) , 2013, QEST.

[17]  Nadia Tawbi,et al.  Specification and Verification of the PowerScale , 2022 .

[18]  Robert E. Tarjan,et al.  Three Partition Refinement Algorithms , 1987, SIAM J. Comput..

[19]  Clark W. Barrett,et al.  The SMT-LIB Standard Version 2.0 , 2010 .

[20]  Roberto Segala,et al.  Decision Algorithms for Probabilistic Bisimulation , 2002, CONCUR.

[21]  Lijun Zhang,et al.  On Probabilistic Automata in Continuous Time , 2010, 2010 25th Annual IEEE Symposium on Logic in Computer Science.

[22]  Christel Baier,et al.  Probabilistic ω-automata , 2012, JACM.

[23]  Johann Schuster Towards faster numerical solution of Continuous Time Markov Chains stored by symbolic data structures , 2012 .

[24]  Robin Milner,et al.  Communication and concurrency , 1989, PHI Series in computer science.

[25]  Nikolaj Bjørner,et al.  Z3: An Efficient SMT Solver , 2008, TACAS.

[26]  Lijun Zhang,et al.  The Quest for Minimal Quotients for Probabilistic Automata , 2013, TACAS.

[27]  Scott A. Smolka,et al.  CCS expressions, finite state processes, and three problems of equivalence , 1983, PODC '83.

[28]  Matthew Hennessy,et al.  On the semantics of Markov automata , 2011, Inf. Comput..

[29]  Joost-Pieter Katoen,et al.  Efficient CTMC Model Checking of Linear Real-Time Objectives , 2011, TACAS.

[30]  Christel Baier,et al.  Principles of model checking , 2008 .

[31]  Martti Tienari,et al.  Essential Transitions to Bisimulation Equivalences , 1997, Theor. Comput. Sci..

[32]  Matthew Hennessy Exploring probabilistic bisimulations, part I , 2012, Formal Aspects of Computing.

[33]  Lijun Zhang,et al.  Distribution-based Bisimulation and Bisimulation Metric in Probabilistic Automata , 2015, ArXiv.

[34]  Lijun Zhang,et al.  Probabilistic bisimulation for realistic schedulers , 2018, Acta Informatica.

[35]  Jaana Eloranta,et al.  Minimizing the number of transitions with respect to observation equivalence , 1991, BIT.

[36]  Holger Hermanns,et al.  Polynomial time decision algorithms for probabilistic automata , 2015, Inf. Comput..

[37]  Markus Siegle,et al.  Markov Automata: Deciding weak bisimulation by means of non-naïvely vanishing states , 2012, Inf. Comput..

[38]  Holger Hermanns,et al.  Probabilistic Bisimulation: Naturally on Distributions , 2014, CONCUR.

[39]  Frédéric Lang,et al.  Smart Reduction , 2011, FASE.

[40]  Marta Z. Kwiatkowska,et al.  PRISM 4.0: Verification of Probabilistic Real-Time Systems , 2011, CAV.

[41]  Thomas A. Henzinger,et al.  Equivalence of Labeled Markov Chains , 2008, Int. J. Found. Comput. Sci..

[42]  Kim Guldstrand Larsen,et al.  Specification and refinement of probabilistic processes , 1991, [1991] Proceedings Sixth Annual IEEE Symposium on Logic in Computer Science.

[43]  Wen-Guey Tzeng,et al.  A Polynomial-Time Algorithm for the Equivalence of Probabilistic Automata , 1992, SIAM J. Comput..