Convolutional Networks on Graphs for Learning Molecular Fingerprints

We introduce a convolutional neural network that operates directly on graphs. These networks allow end-to-end learning of prediction pipelines whose inputs are graphs of arbitrary size and shape. The architecture we present generalizes standard molecular feature extraction methods based on circular fingerprints. We show that these data-driven features are more interpretable, and have better predictive performance on a variety of tasks.

[1]  H. L. Morgan The Generation of a Unique Machine Description for Chemical Structures-A Technique Developed at Chemical Abstracts Service. , 1965 .

[2]  David Weininger,et al.  SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules , 1988, J. Chem. Inf. Comput. Sci..

[3]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[4]  Yoshua Bengio,et al.  Convolutional networks for images, speech, and time series , 1998 .

[5]  John S. Delaney,et al.  ESOL: Estimating Aqueous Solubility Directly from Molecular Structure , 2004, J. Chem. Inf. Model..

[6]  A. Bender,et al.  Circular fingerprints: flexible molecular descriptors with applications from physical chemistry to ADME. , 2006, IDrugs : the investigational drugs journal.

[7]  Travis E. Oliphant,et al.  Python for Scientific Computing , 2007, Computing in Science & Engineering.

[8]  Ah Chung Tsoi,et al.  The Graph Neural Network Model , 2009, IEEE Transactions on Neural Networks.

[9]  Alessio Micheli,et al.  Neural Network for Graphs: A Contextual Constructive Approach , 2009, IEEE Transactions on Neural Networks.

[10]  James R. Brown,et al.  Thousands of chemical starting points for antimalarial lead identification , 2010, Nature.

[11]  David Rogers,et al.  Extended-Connectivity Fingerprints , 2010, J. Chem. Inf. Model..

[12]  Alán Aspuru-Guzik,et al.  The Harvard Clean Energy Project: Large-Scale Computational Screening and Design of Organic Photovoltaics on the World Community Grid , 2011 .

[13]  Jeffrey Pennington,et al.  Dynamic Pooling and Unfolding Recursive Autoencoders for Paraphrase Detection , 2011, NIPS.

[14]  Jeffrey Pennington,et al.  Semi-Supervised Recursive Autoencoders for Predicting Sentiment Distributions , 2011, EMNLP.

[15]  Alán Aspuru-Guzik,et al.  The Harvard Clean Energy Project. Large-scale computational screening and design of molecular motifs for organic photovoltaics on the World Community Grid , 2011 .

[16]  Razvan Pascanu,et al.  Theano: new features and speed improvements , 2012, ArXiv.

[17]  Yann LeCun,et al.  Regularization of Neural Networks using DropConnect , 2013, ICML.

[18]  Pierre Baldi,et al.  Deep Architectures and Deep Learning in Chemoinformatics: The Prediction of Aqueous Solubility for Drug-Like Molecules , 2013, J. Chem. Inf. Model..

[19]  Jonathan Le Roux,et al.  Deep Unfolding: Model-Based Inspiration of Novel Deep Architectures , 2014, ArXiv.

[20]  Phil Blunsom,et al.  A Convolutional Neural Network for Modelling Sentences , 2014, ACL.

[21]  Navdeep Jaitly,et al.  Multi-task Neural Networks for QSAR Predictions , 2014, ArXiv.

[22]  Joan Bruna,et al.  Spectral Networks and Locally Connected Networks on Graphs , 2013, ICLR.

[23]  Alex Graves,et al.  Neural Turing Machines , 2014, ArXiv.

[24]  Christopher D. Manning,et al.  Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks , 2015, ACL.

[25]  Sergey Ioffe,et al.  Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift , 2015, ICML.

[26]  Sepp Hochreiter,et al.  Toxicity Prediction using Deep Learning , 2015, ArXiv.

[27]  Vijay S. Pande,et al.  Massively Multitask Networks for Drug Discovery , 2015, ArXiv.

[28]  Andreas Mayr,et al.  Deep Learning as an Opportunity in Virtual Screening , 2015 .

[29]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.