Characteristic Kernels and Infinitely Divisible Distributions

We connect shift-invariant characteristic kernels to infinitely divisible distributions on $\mathbb{R}^{d}$. Characteristic kernels play an important role in machine learning applications with their kernel means to distinguish any two probability measures. The contribution of this paper is two-fold. First, we show, using the L\'evy-Khintchine formula, that any shift-invariant kernel given by a bounded, continuous and symmetric probability density function (pdf) of an infinitely divisible distribution on $\mathbb{R}^d$ is characteristic. We also present some closure property of such characteristic kernels under addition, pointwise product, and convolution. Second, in developing various kernel mean algorithms, it is fundamental to compute the following values: (i) kernel mean values $m_P(x)$, $x \in \mathcal{X}$, and (ii) kernel mean RKHS inner products ${\left\langle m_P, m_Q \right\rangle_{\mathcal{H}}}$, for probability measures $P, Q$. If $P, Q$, and kernel $k$ are Gaussians, then computation (i) and (ii) results in Gaussian pdfs that is tractable. We generalize this Gaussian combination to more general cases in the class of infinitely divisible distributions. We then introduce a {\it conjugate} kernel and {\it convolution trick}, so that the above (i) and (ii) have the same pdf form, expecting tractable computation at least in some cases. As specific instances, we explore $\alpha$-stable distributions and a rich class of generalized hyperbolic distributions, where the Laplace, Cauchy and Student-t distributions are included.

[1]  Le Song,et al.  A Hilbert Space Embedding for Distributions , 2007, Discovery Science.

[2]  Ole E. Barndorff-Nielsen,et al.  Apparent scaling , 2001, Finance Stochastics.

[3]  M. Urner Scattered Data Approximation , 2016 .

[4]  Matthias Hein,et al.  Hilbertian Metrics and Positive Definite Kernels on Probability Measures , 2005, AISTATS.

[5]  M. Taqqu,et al.  Stable Non-Gaussian Random Processes : Stochastic Models with Infinite Variance , 1995 .

[6]  P. Hall ONE‐DIMENSIONAL STABLE DISTRIBUTIONS (Translations of Mathematical Monographs 65) , 1987 .

[7]  Benjamin Recht,et al.  Random Features for Large-Scale Kernel Machines , 2007, NIPS.

[8]  Zoubin Ghahramani,et al.  Statistical Model Criticism using Kernel Two Sample Tests , 2015, NIPS.

[9]  Olof Thorin,et al.  An extension of the notion of a generalized Γ-convolution , 1978 .

[10]  Frank J. Fabozzi,et al.  Financial Models with Levy Processes and Volatility Clustering , 2011 .

[11]  Le Song,et al.  The Nonparametric Kernel Bayes Smoother , 2016, AISTATS.

[12]  Le Song,et al.  A Kernel Statistical Test of Independence , 2007, NIPS.

[13]  Svetlozar T. Rachev,et al.  Tempered Infinitely Divisible Distributions and Processes , 2011 .

[14]  J. Nolan,et al.  Approximation of Multidimensional Stable Densities , 1993 .

[15]  Le Song,et al.  Kernel Bayes' Rule , 2010, NIPS.

[16]  E. Seneta,et al.  The Variance Gamma (V.G.) Model for Share Market Returns , 1990 .

[17]  Hyunjoong Kim,et al.  Functional Analysis I , 2017 .

[18]  Michael I. Jordan,et al.  Kernel dimension reduction in regression , 2009, 0908.1854.

[19]  Kenji Fukumizu,et al.  Model-based Kernel Sum Rule , 2014 .

[20]  Gunnar Rätsch,et al.  Kernel PCA and De-Noising in Feature Spaces , 1998, NIPS.

[21]  Shun-ichi Amari,et al.  Methods of information geometry , 2000 .

[22]  佐藤 健一 Lévy processes and infinitely divisible distributions , 2013 .

[23]  M. Yor,et al.  The Fine Structure of Asset Retums : An Empirical Investigation ' , 2006 .

[24]  Ken-iti Sato Class L of multivariate distributions and its subclasses , 1980 .

[25]  Marc Toussaint,et al.  Path Integral Control by Reproducing Kernel Hilbert Space Embedding , 2013, IJCAI.

[26]  J. Rosínski Tempering stable processes , 2007 .

[27]  P. Carr,et al.  The Variance Gamma Process and Option Pricing , 1998 .

[28]  Alexander J. Smola,et al.  Hilbert space embeddings of conditional distributions with applications to dynamical systems , 2009, ICML '09.

[29]  Ole E. Barndorff-Nielsen,et al.  Processes of normal inverse Gaussian type , 1997, Finance Stochastics.

[30]  Bernhard Schölkopf,et al.  A Kernel Two-Sample Test , 2012, J. Mach. Learn. Res..

[31]  F. Steutel,et al.  Infinite Divisibility of Probability Distributions on the Real Line , 2003 .

[32]  Alexander J. Smola,et al.  Learning with kernels , 1998 .

[33]  Bernhard Schölkopf,et al.  Learning from Distributions via Support Measure Machines , 2012, NIPS.

[34]  Kenji Fukumizu,et al.  Universality, Characteristic Kernels and RKHS Embedding of Measures , 2010, J. Mach. Learn. Res..

[35]  R. Schilling Financial Modelling with Jump Processes , 2005 .

[36]  Emil Grosswald,et al.  The student t-distribution of any degree of freedom is infinitely divisible , 1976 .

[37]  Alexander J. Smola,et al.  Super-Samples from Kernel Herding , 2010, UAI.

[38]  Le Song,et al.  A unified kernel framework for nonparametric inference in graphical models ] Kernel Embeddings of Conditional Distributions , 2013 .

[39]  John P. Nolan,et al.  Bibliography on stable distributions, processes and related topics , 2004 .

[40]  O. Barndorff-Nielsen,et al.  Infinite divisibility of the hyperbolic and generalized inverse Gaussian distributions , 1977 .

[41]  Bernhard Schölkopf,et al.  Kernel Measures of Conditional Dependence , 2007, NIPS.

[42]  Michael I. Jordan,et al.  Dimensionality Reduction for Supervised Learning with Reproducing Kernel Hilbert Spaces , 2004, J. Mach. Learn. Res..

[43]  A. Berlinet,et al.  Reproducing kernel Hilbert spaces in probability and statistics , 2004 .

[44]  C. Berg,et al.  Harmonic Analysis on Semigroups , 1984 .

[45]  Andreas Christmann,et al.  Support vector machines , 2008, Data Mining and Knowledge Discovery Handbook.

[46]  John P. Nolan,et al.  Multivariate elliptically contoured stable distributions: theory and estimation , 2013, Computational Statistics.

[47]  Bernhard Schölkopf,et al.  Characteristic Kernels on Groups and Semigroups , 2008, NIPS.

[48]  K. Prause The Generalized Hyperbolic Model: Estimation, Financial Derivatives, and Risk Measures , 1999 .

[49]  Fabio Tozeto Ramos,et al.  Multi-modal estimation with kernel embeddings for learning motion models , 2013, 2013 IEEE International Conference on Robotics and Automation.

[50]  Le Song,et al.  Tailoring density estimation via reproducing kernel moment matching , 2008, ICML '08.

[51]  D. N. Shanbhag,et al.  An extension of Goldie's result and further results in infinite divisibility , 1979 .

[52]  Bernhard Schölkopf,et al.  A Kernel Method for the Two-Sample-Problem , 2006, NIPS.

[53]  W. Schoutens Lévy Processes in Finance: Pricing Financial Derivatives , 2003 .

[54]  Kenji Fukumizu,et al.  Gradient-based kernel method for feature extraction and variable selection , 2012, NIPS.

[55]  R. G. Laha Review: V. M. Zolotarev, One-dimensional stable distributions , 1989 .

[56]  S. Bochner,et al.  Lectures on Fourier integrals : with an author's supplement on monotonic functions, Stieltjes integrals, and harmonic analysis , 1959 .

[57]  Le Song,et al.  Kernel Bayes' rule: Bayesian inference with positive definite kernels , 2013, J. Mach. Learn. Res..

[58]  Wai Ha Lee Continuous and discrete properties of stochastic processes , 2010 .

[59]  Le Song,et al.  Kernel Belief Propagation , 2011, AISTATS.

[60]  Bernhard Schölkopf,et al.  Hilbert Space Embeddings and Metrics on Probability Measures , 2009, J. Mach. Learn. Res..

[61]  Byron Boots,et al.  Hilbert Space Embeddings of Predictive State Representations , 2013, UAI.

[62]  Arthur Gretton,et al.  Consistent Nonparametric Tests of Independence , 2010, J. Mach. Learn. Res..

[63]  Le Song,et al.  Hilbert Space Embeddings of Hidden Markov Models , 2010, ICML.

[64]  Guy Lever,et al.  Modelling transition dynamics in MDPs with RKHS embeddings , 2012, ICML.

[65]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[66]  KanagawaMotonobu,et al.  Filtering with state-observation examples via kernel monte carlo filter , 2016 .

[67]  Kenji Fukumizu,et al.  Hilbert Space Embeddings of POMDPs , 2012, UAI.

[68]  N. Aronszajn Theory of Reproducing Kernels. , 1950 .

[69]  W. Breymann,et al.  ghyp: A package on generalized hyperbolic distributions , 2009 .

[70]  Kenji Fukumizu,et al.  Filtering with State-Observation Examples via Kernel Monte Carlo Filter , 2013, Neural Computation.