Deformation and life assessment of high temperature materials under creep fatigue loading

The knowledge of mechanical long term behaviour under static and cyclic loading for high temperature components requires methodologies for life assessment in order to employ the full potential of materials. A phenomenological life time prediction concept which was developed for multi-stage creep fatigue loading demonstrates the applicability of rules for synthesis of stress strain path and relaxation including an internal stress concept, as well as mean stress effects. Further, a creep fatigue interaction concept which was also developed covers a wide range of creep dominant loading as well as fatigue dominant loading. Service-type experiments conducted at different strain rates and hold times for verification purposes demonstrate the acceptability of life prediction method for variation of conventional 1 %Cr-steels as well as modern high chromium 9-10 %Cr-steels. Generally, the service life of components is influenced by multi-axial behaviour. Multi-axial experiments with e.g. notched specimens and with cruciform specimens accompanied by advanced methods for calculation of stress strain path and life time prediction stress conditions are of future interest. Zur Entwicklung von Lebensdauervorhersagemethoden sind Kenntnisse uber statische und zyklische Hochtemperaturwerkstoffeigenschaften erforderlich, um das Werkstoffpotenzial voll nutzen zu konnen. Zu diesem Zweck wurde ein phanomenologisches Lebensdauervorhersageverfahren fur mehrstufige Kriechermudungsbeanspruchung entwickelt, in welchem Regeln zur Synthese des Spannungs-Dehnungsverhaltens und des Relaxationsverhaltens zur Anwendung kommen. Hierbei gehen innere Spannung und Mittelspannung ein. Weiter kommt ein Konzept zur Wechselwirkung von Kriechen und Ermuden zur Anwendung, welches einen weiten Bereich von uberwiegender Kriech- bzw. Ermudungsbeanspruchung berucksichtigt. Auf der Grundlage von betriebsahnlichen Kriechermudungsversuchen unter Variation von Dehnraten und Haltezeiten lies sich die Eignung dieses Lebensdauervorhersageverfahrens am Beispiel konventioneller 1 %Cr-Stahle als auch moderner 10 %Cr-Stahle verifizieren. Generell ist die Lebensdauer von Komponenten vom Werkstoffverhalten unter mehrachsiger Beanspruchung abhangig. Mehrachsige Experimente an gekerbten Proben sowie an Kreuzproben begleitet von fortschrittlichen Methoden zur Berechung des Spannungs-Dehnungspfades und zur Lebensdauervorhersage sind daher von zukunftigem Interesse.

[1]  A. D. Batte,et al.  High-strain high-temperature fatigue properties of a 0·5Cr–Mo–V steam turbine casing steel , 1978 .

[2]  C. Tsakmakis,et al.  The Principle of Generalized Energy Equivalence in Continuum Damage Mechanics , 2003 .

[3]  E. G. Ellison,et al.  Creep Fatigue Interactions in a 1 CrMo V Steel , 1976 .

[4]  Shuji Taira,et al.  Lifetime of Structures Subjected to Varying Load and Temperature , 1962 .

[5]  C. Tanaka,et al.  LIFE PREDICTION OF 316 STAINLESS STEEL UNDER CREEP‐FATIGUE LOADING , 1987 .

[6]  J. Granacher,et al.  Mehrstufige betriebsähnliche Dehnwechselbeanspruchung warmfester Stähle , 1996 .

[7]  R. Hales,et al.  A QUANTITATIVE METALLOGRAPHIC ASSESSMENT OF STRUCTURAL DEGRADATION OF TYPE 316 STAINLESS STEEL DURING CREEP‐FATIGUE , 1980 .

[8]  R. Hales A METHOD OF CREEP DAMAGE SUMMATION BASED ON ACCUMULATED STRAIN FOR THE ASSESSMENT OF CREEP‐FATIGUE ENDURANCE , 1983 .

[9]  D. Miller,et al.  Materials Response to Thermal-Mechanical Strain Cycling , 1987 .

[10]  C. Berger,et al.  Biaxial thermomechanical fatigue experiments with cruciform test pieces , 2004 .

[11]  Alfred Scholz,et al.  Behaviour of heat resistant power plant steels undergoing variable long term loading conditions , 2000 .

[12]  A. Levy A Physically Based Constitutive Equation for Creep-Damaging Solids , 1985 .

[13]  W. Plumbridge Metallography of High Temperature Fatigue , 1987 .

[14]  G. Halford,et al.  Strainrange partitioning: A tool for characterizing high temperature low cycle fatigue. [materials fatigue test] , 1975 .

[15]  W. Blum,et al.  Effects of cyclic deformation on subgrain evolution and creep in 9–12% Cr-steels , 2005 .

[16]  R. Hales The Physical Metallurgy of Failure Criteria , 1987 .

[17]  J. Granacher,et al.  Creep fatigue behaviour of heat resistant turbine rotor steels under service-type strain cycling , 1997 .