Study of a Depressurisation Process at Low Mach number in a nuclear reactor core

This paper deals with the numerical treatment of two additional terms in the Lmnc-system derived and studied in previous publications and modelling the coolant in a nuclear reactor core. On the one hand, we investigate the influence of the thermal conduction upon steady analytical solutions and upon numerical strategies designed in dimensions 1 and 2. On the other hand, we consider a time-varying thermodynamic pressure that enables to simulate a larger variety of physical situations. Taking into account the resulting terms in the equations lead us to adapt numerical methods to ensure accuracy.

[1]  Alfio Quarteroni,et al.  On the coupling of hyperbolic and parabolic systems: analytical and numerical approach , 1988 .

[2]  Richard T. Lahey,et al.  An Exact Solution for Flow Transients in Two-Phase Systems by the Method of Characteristics , 1973 .

[3]  Frédéric Hecht,et al.  New development in freefem++ , 2012, J. Num. Math..

[4]  P. Embid,et al.  Well-posedness of the nonlinear equations for zero mach number combustion , 1987 .

[5]  Stéphane Dellacherie,et al.  Study of a low Mach nuclear core model for two-phase flows with phase transition I: stiffened gas law , 2014 .

[6]  Erell Jamelot,et al.  A simple monodimensional model coupling an enthalpy transport equation and a neutron diffusion equation , 2016, Appl. Math. Lett..

[7]  Stéphane Dellacherie,et al.  Study of a low Mach nuclear core model for single-phase flows , 2012 .

[8]  Stéphane Dellacherie,et al.  Une solution explicite monodimensionnelle d’un modèle simplifié de couplage stationnaire thermohydraulique–neutronique , 2017 .

[9]  Eric W. Lemmon,et al.  Thermophysical Properties of Fluid Systems , 1998 .

[10]  O. Pironneau On the transport-diffusion algorithm and its applications to the Navier-Stokes equations , 1982 .

[11]  R. Klein Semi-implicit extension of a Godunov-type scheme based on low Mach number asymptotics , 1995 .

[12]  Bruno Després,et al.  Coupling strategies for compressible-low Mach number flows , 2015 .

[13]  A. Ern,et al.  Mathematical Aspects of Discontinuous Galerkin Methods , 2011 .

[14]  A. Majda,et al.  Compressible and incompressible fluids , 1982 .

[15]  Marcel Bauer,et al.  Numerical Methods for Partial Differential Equations , 1994 .

[16]  Stéphane Dellacherie,et al.  2D numerical simulation of a low Mach nuclear core model with stiffened gas using FreeFem , 2014 .

[17]  Stéphane Dellacherie,et al.  Study of a low Mach nuclear core model for two-phase flows with phase transition II: tabulated equation of state , 2015 .

[18]  Stéphane Dellacherie On a low Mach nuclear core model , 2012 .

[19]  Yohan Penel,et al.  An explicit stable numerical scheme for the $1D$ transport equation , 2011 .

[20]  James A. Sethian,et al.  THE DERIVATION AND NUMERICAL SOLUTION OF THE EQUATIONS FOR ZERO MACH NUMBER COMBUSTION , 1985 .