Sparsification Upper and Lower Bounds for Graph Problems and Not-All-Equal SAT

We present several sparsification lower and upper bounds for classic problems in graph theory and logic. For the problems 4-Coloring, (Directed) Hamiltonian Cycle, and (Connected) Dominating Set, we prove that there is no polynomial-time algorithm that reduces any n-vertex input to an equivalent instance, of an arbitrary problem, with bitsize $$O(n^{2-\varepsilon })$$O(n2-ε) for $$\varepsilon > 0$$ε>0, unless $$\mathsf {NP \subseteq coNP/poly}$$NP⊆coNP/poly and the polynomial-time hierarchy collapses. These results imply that existing linear-vertex kernels for k-Nonblocker and k-Max Leaf Spanning Tree (the parametric duals of (Connected) Dominating Set) cannot be improved to have $$O(k^{2-\varepsilon })$$O(k2-ε) edges, unless $$\mathsf {NP \subseteq coNP/poly}$$NP⊆coNP/poly. We also present a positive result and exhibit a non-trivial sparsification algorithm for d-Not-All-Equal-SAT. We give an algorithm that reduces an n-variable input with clauses of size at most d to an equivalent input with $$O(n^{d-1})$$O(nd-1) clauses, for any fixed d. Our algorithm is based on a linear-algebraic proof of Lovász that bounds the number of hyperedges in critically 3-chromatic d-uniform n-vertex hypergraphs by $$\left( {\begin{array}{c}n\\ d-1\end{array}}\right) $$nd-1. We show that our kernel is tight under the assumption that $$\mathsf {NP} \nsubseteq \mathsf {coNP}/\mathsf {poly}$$NP⊈coNP/poly.

[1]  Lance Fortnow,et al.  Infeasibility of instance compression and succinct PCPs for NP , 2007, J. Comput. Syst. Sci..

[2]  Stefan Kratsch,et al.  Co-Nondeterminism in Compositions: A Kernelization Lower Bound for a Ramsey-Type Problem , 2011, TALG.

[3]  Bart M. P. Jansen,et al.  Optimal Sparsification for Some Binary CSPs Using Low-Degree Polynomials , 2016, MFCS.

[4]  Fedor V. Fomin,et al.  Kernels for feedback arc set in tournaments , 2011, J. Comput. Syst. Sci..

[5]  Michael R. Fellows,et al.  Fundamentals of Parameterized Complexity , 2013 .

[6]  Michael R. Fellows,et al.  FIXED-PARAMETER TRACTABILITY AND COMPLETENESS , 2022 .

[7]  Michael R. Fellows,et al.  On problems without polynomial kernels , 2009, J. Comput. Syst. Sci..

[8]  Russell Impagliazzo,et al.  Which problems have strongly exponential complexity? , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[9]  Dieter van Melkebeek,et al.  Satisfiability allows no nontrivial sparsification unless the polynomial-time hierarchy collapses , 2010, STOC '10.

[10]  Leslie E. Trotter,et al.  Vertex packings: Structural properties and algorithms , 1975, Math. Program..

[11]  Bart M. P. Jansen,et al.  Sparsification Upper and Lower Bounds for Graph Problems and Not-All-Equal SAT , 2015, Algorithmica.

[12]  David Eppstein,et al.  Sparsification-a technique for speeding up dynamic graph algorithms , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[13]  Jörg Flum,et al.  Parameterized Complexity Theory , 2006, Texts in Theoretical Computer Science. An EATCS Series.

[14]  Fabrizio Grandoni,et al.  Tight Kernel Bounds for Problems on Graphs with Small Degeneracy - (Extended Abstract) , 2013, ESA.

[15]  Michael R. Fellows,et al.  Fixed-Parameter Tractability and Completeness II: On Completeness for W[1] , 1995, Theor. Comput. Sci..

[16]  Saket Saurabh,et al.  Kernelization Lower Bounds Through Colors and IDs , 2014, ACM Trans. Algorithms.

[17]  Dániel Marx,et al.  Kernelization of packing problems , 2012, SODA.

[18]  Michael R. Fellows,et al.  FPT is P-Time Extremal Structure I , 2005, ACiD.

[19]  Stefan Kratsch,et al.  Kernelization Lower Bounds by Cross-Composition , 2012, SIAM J. Discret. Math..

[20]  Reinhard Diestel,et al.  Graph Theory , 1997 .

[21]  Hans L. Bodlaender,et al.  Kernelization: New Upper and Lower Bound Techniques , 2009, IWPEC.

[22]  Henning Fernau,et al.  NONBLOCKER: Parameterized Algorithmics for minimum dominating set , 2006, SOFSEM.

[23]  Bruce A. Reed,et al.  Finding odd cycle transversals , 2004, Oper. Res. Lett..

[24]  Bart M. P. Jansen,et al.  On Sparsification for Computing Treewidth , 2013, Algorithmica.

[25]  Stefan Kratsch,et al.  Data reduction for graph coloring problems , 2011, Inf. Comput..

[26]  Michal Pilipczuk,et al.  Dominating set is fixed parameter tractable in claw-free graphs , 2010, Theor. Comput. Sci..

[27]  Anders Yeo,et al.  Kernel bounds for disjoint cycles and disjoint paths , 2009, Theor. Comput. Sci..

[28]  Xi Wu,et al.  Weak compositions and their applications to polynomial lower bounds for kernelization , 2012, SODA.

[29]  Fabrizio Grandoni,et al.  Tight Kernel Bounds for Problems on Graphs with Small Degeneracy , 2017, ACM Trans. Algorithms.

[30]  Michael R. Fellows,et al.  FPT is characterized by useful obstruction sets: Connecting algorithms, kernels, and quasi-orders , 2014, TOCT.

[31]  Stefan Kratsch,et al.  Kernel bounds for path and cycle problems , 2013, Theor. Comput. Sci..