Strict Lyapunov functions for semilinear parabolic partial differential equations

For families of partial differential equations (PDEs) with particular boundary conditions, strict Lyapunov functions are constructed. The PDEs under consideration are parabolic and, in addition to the diffusion term, may contain a nonlinear source term plus a convection term. The boundary conditions may be either the classical Dirichlet conditions, or the Neumann boundary conditions or a periodic one. The constructions rely on the knowledge of weak Lyapunov functions for the nonlinear source term. The strict Lyapunov functions are used to prove asymptotic stability in the framework of an appropriate topology. Moreover, when an uncertainty is considered, our construction of a strict Lyapunov function makes it possible to establish some robustness properties of Input-to-State Stability (ISS) type.

[1]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[2]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[3]  M. Slemrod A Note on Complete Controllability and Stabilizability for Linear Control Systems in Hilbert Space , 1974 .

[4]  Hiroshi Matano,et al.  Convergence, asymptotic periodicity, and finite-point blow-up in one-dimensional semilinear heat equations , 1989 .

[5]  Jerrold Bebernes,et al.  Mathematical Problems from Combustion Theory , 1989 .

[6]  Hatem Zaag,et al.  Stability of the blow-up profile for equations of the type $u_t=\Delta u+|u|^{p-1}u$ , 1997 .

[7]  Brigitte d'Andréa-Novel,et al.  Stabilization of a rotating body beam without damping , 1998, IEEE Trans. Autom. Control..

[8]  K. Gu Stability and Stabilization of Infinite Dimensional Systems with Applications , 1999 .

[9]  A. Haraux,et al.  An Introduction to Semilinear Evolution Equations , 1999 .

[10]  乔花玲,et al.  关于Semigroups of Linear Operators and Applications to Partial Differential Equations的两个注解 , 2003 .

[11]  Georges Bastin,et al.  A Strict Lyapunov Function for Boundary Control of Hyperbolic Systems of Conservation Laws , 2007, IEEE Transactions on Automatic Control.

[12]  Emmanuel Trélat,et al.  Global Steady-State Controllability of One-Dimensional Semilinear Heat Equations , 2004, SIAM J. Control. Optim..

[13]  Denis Matignon,et al.  Asymptotic stability of linear conservative systems when coupled with diffusive systems , 2005 .

[14]  Dragan Nesic,et al.  Lyapunov functions for time-varying systems satisfying generalized conditions of Matrosov theorem , 2007, Proceedings of the 44th IEEE Conference on Decision and Control.

[15]  Emmanuel Trélat,et al.  GLOBAL STEADY-STATE STABILIZATION AND CONTROLLABILITY OF 1D SEMILINEAR WAVE EQUATIONS , 2006 .

[16]  Daniel E. Geer,et al.  Convergence , 2021, IEEE Secur. Priv..

[17]  Miroslav Krstic,et al.  Adaptive boundary control for unstable parabolic PDEs - Part III: Output feedback examples with swapping identifiers , 2007, Autom..

[18]  Miroslav Krstic,et al.  Adaptive boundary control for unstable parabolic PDEs - Part II: Estimation-based designs , 2007, Autom..

[19]  Zongli Lin,et al.  On Input-to-State Stability for Nonlinear Systems with Delayed Feedbacks , 2007, ACC.

[20]  Miroslav Krstic,et al.  Adaptive Boundary Control for Unstable Parabolic PDEs—Part I: Lyapunov Design , 2008, IEEE Transactions on Automatic Control.

[21]  M. Krstić Boundary Control of PDEs: A Course on Backstepping Designs , 2008 .

[22]  Eduardo Sontag Input to State Stability: Basic Concepts and Results , 2008 .

[23]  Denis Dochain,et al.  Asymptotic Behavior and Stability for Solutions of a Biochemical Reactor Distributed Parameter Model , 2008, IEEE Transactions on Automatic Control.

[24]  Georges Bastin,et al.  Dissipative Boundary Conditions for One-Dimensional Nonlinear Hyperbolic Systems , 2008, SIAM J. Control. Optim..

[25]  Zhong-Ping Jiang,et al.  Input-to-Output Stability for Systems Described by Retarded Functional Differential Equations , 2008, Eur. J. Control.

[26]  M. Krstić,et al.  Boundary Control of PDEs , 2008 .

[27]  M. Malisoff,et al.  Constructions of Strict Lyapunov Functions , 2009 .

[28]  Pierdomenico Pepe,et al.  Input-to-State Stabilization of Stabilizable, Time-Delay, Control-Affine, Nonlinear Systems , 2009, IEEE Transactions on Automatic Control.

[29]  Orest V. Iftime,et al.  Optimal control of switched distributed parameter systems with spatially scheduled actuators , 2009, Autom..

[30]  Olivier Bernard,et al.  A Simplified Design for Strict Lyapunov Functions Under Matrosov Conditions , 2009, IEEE Transactions on Automatic Control.

[31]  P Pepe,et al.  On saturation, discontinuities and time-delays in iISS and ISS feedback control redesign , 2010, Proceedings of the 2010 American Control Conference.

[32]  Frédéric Mazenc,et al.  ISS Lyapunov functions for time-varying hyperbolic partial differential equations , 2011, IEEE Conference on Decision and Control and European Control Conference.