Identification of genetic elements in metabolism by high-throughput mouse phenotyping

[1]  Steve D. M. Brown,et al.  A large scale hearing loss screen reveals an extensive unexplored genetic landscape for auditory dysfunction , 2017, Nature Communications.

[2]  Steve D. M. Brown,et al.  Prevalence of sexual dimorphism in mammalian phenotypic traits , 2017, Nature Communications.

[3]  Steve D. M. Brown,et al.  Disease Model Discovery from 3,328 Gene Knockouts by The International Mouse Phenotyping Consortium , 2017, Nature Genetics.

[4]  A. Hattersley,et al.  Precision diabetes: learning from monogenic diabetes , 2017, Diabetologia.

[5]  Lynne Pearce,et al.  Non-alcoholic fatty liver disease. , 2016, Nursing standard (Royal College of Nursing (Great Britain) : 1987).

[6]  Stephen C. J. Parker,et al.  The genetic architecture of type 2 diabetes , 2016, Nature.

[7]  F. Middleton,et al.  A splicing-regulatory polymorphism in DRD2 disrupts ZRANB2 binding, impairs cognitive functioning and increases risk for schizophrenia in six Han Chinese samples , 2016, Molecular Psychiatry.

[8]  Tsippi Iny Stein,et al.  The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses , 2016, Current protocols in bioinformatics.

[9]  T. Kadowaki,et al.  Genes associated with diabetes: potential for novel therapeutic targets? , 2016, Expert opinion on therapeutic targets.

[10]  D. Glahn,et al.  Genome- and epigenome-wide association study of hypertriglyceridemic waist in Mexican American families , 2016, Clinical Epigenetics.

[11]  Minoru Kanehisa,et al.  KEGG as a reference resource for gene and protein annotation , 2015, Nucleic Acids Res..

[12]  M. Kas,et al.  The preclinical data forum network: A new ECNP initiative to improve data quality and robustness for (preclinical) neuroscience , 2015, European Neuropsychopharmacology.

[13]  D. Rothenbacher,et al.  Prevalence, incidence and concomitant co-morbidities of type 2 diabetes mellitus in South Western Germany - a retrospective cohort and case control study in claims data of a large statutory health insurance , 2015, BMC Public Health.

[14]  Julius O. B. Jacobsen,et al.  A mouse informatics platform for phenotypic and translational discovery , 2015, Mammalian Genome.

[15]  Henrik Westerberg,et al.  Analysis of mammalian gene function through broad based phenotypic screens across a consortium of mouse clinics , 2015, Nature Genetics.

[16]  H. Darwish,et al.  Diabetes mellitus: The epidemic of the century. , 2015, World journal of diabetes.

[17]  Monjur Ahmed,et al.  Non-alcoholic fatty liver disease in 2015. , 2015, World journal of hepatology.

[18]  Steve D. M. Brown,et al.  Applying the ARRIVE Guidelines to an In Vivo Database , 2015, PLoS biology.

[19]  István A. Kovács,et al.  Widespread Macromolecular Interaction Perturbations in Human Genetic Disorders , 2015, Cell.

[20]  M. Fornage,et al.  Association of a 62 Variants Type 2 Diabetes Genetic Risk Score With Markers of Subclinical Atherosclerosis: A Transethnic, Multicenter Study , 2015, Circulation. Cardiovascular genetics.

[21]  P. Froguel,et al.  Rare and common genetic events in type 2 diabetes: what should biologists know? , 2015, Cell metabolism.

[22]  Ross M. Fraser,et al.  Genetic studies of body mass index yield new insights for obesity biology , 2015, Nature.

[23]  N. Wareham,et al.  Epidemiology of diabetes , 2014, Medicine.

[24]  Gabi Kastenmüller,et al.  SNiPA: an interactive, genetic variant-centered annotation browser , 2014, Bioinform..

[25]  M. Estecio,et al.  High-throughput screening of mouse gene knockouts identifies established and novel skeletal phenotypes , 2014, Bone Research.

[26]  C. Thummel,et al.  Epigenetic inheritance of metabolic state. , 2014, Current opinion in genetics & development.

[27]  Eric Boerwinkle,et al.  Pleiotropic genes for metabolic syndrome and inflammation. , 2014, Molecular genetics and metabolism.

[28]  Tanya M. Teslovich,et al.  Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility , 2014 .

[29]  Ramin Homayouni,et al.  Functionally Enigmatic Genes: A Case Study of the Brain Ignorome , 2014, PloS one.

[30]  Zheng Li,et al.  Age–dependent regulation of synaptic connections by dopamine D2 receptors , 2013, Nature Neuroscience.

[31]  Tanya M. Teslovich,et al.  Discovery and refinement of loci associated with lipid levels , 2013, Nature Genetics.

[32]  Gretchen A. Stevens,et al.  National, regional, and global trends in adult overweight and obesity prevalences , 2012, Population Health Metrics.

[33]  J. Hirschhorn,et al.  Candidate genes for obesity-susceptibility show enriched association within a large genome-wide association study for BMI. , 2012, Human molecular genetics.

[34]  Steve D. M. Brown,et al.  The International Mouse Phenotyping Consortium: past and future perspectives on mouse phenotyping , 2012, Mammalian Genome.

[35]  Tanya M. Teslovich,et al.  Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways , 2012, Nature Genetics.

[36]  Claude Bouchard,et al.  A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance , 2012, Nature Genetics.

[37]  Tom R. Gaunt,et al.  Genetic Variants in Novel Pathways Influence Blood Pressure and Cardiovascular Disease Risk , 2011, Nature.

[38]  Kasper Lage,et al.  Pervasive Sharing of Genetic Effects in Autoimmune Disease , 2011, PLoS genetics.

[39]  Peer Bork,et al.  iPath2.0: interactive pathway explorer , 2011, Nucleic Acids Res..

[40]  R. Corcoy Comment on: Soranzo et al. Common Variants at 10 Genomic Loci Influence Hemoglobin A1C Levels via Glycemic and Nonglycemic Pathways. Diabetes 2010;59:3229–3239 , 2011, Diabetes.

[41]  Josée Dupuis,et al.  Meta‐analysis of gene‐environment interaction: joint estimation of SNP and SNP × environment regression coefficients , 2011, Genetic epidemiology.

[42]  Juliane,et al.  Edinburgh Research Explorer Common variants at 10 genomic loci influence hemoglobin A(C) levels via glycemic and nonglycemic pathways , 2010 .

[43]  M. Owen,et al.  EVIDENCE THAT PUTATIVE ADHD LOW RISK ALLELES AT SNAP25 MAY INCREASE THE RISK OF SCHIZOPHRENIA , 2009, Schizophrenia Research.

[44]  Matthias Frisch,et al.  LitInspector: literature and signal transduction pathway mining in PubMed abstracts , 2009, Nucleic Acids Res..

[45]  Yoav Gilad,et al.  Sex-specific genetic architecture of human disease , 2008, Nature Reviews Genetics.

[46]  F. Schick,et al.  Polymorphisms in the gene encoding adiponectin receptor 1 are associated with insulin resistance and high liver fat , 2005, Diabetologia.

[47]  Werner Müller,et al.  Introducing the German Mouse Clinic: open access platform for standardized phenotyping , 2005, Nature Methods.

[48]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[49]  W C Willett,et al.  Adjustment for total energy intake in epidemiologic studies. , 1997, The American journal of clinical nutrition.

[50]  J. Zicha,et al.  Epigenetics and a new look on metabolic syndrome. , 2015, Physiological research.

[51]  John M. Hancock,et al.  EuroPhenome and EMPReSS: online mouse phenotyping resource , 2008 .