A potential application in quantum networks—Deterministic quantum operation sharing schemes with Bell states

In this paper, we propose certain different design ideas on a novel topic in quantum cryptography — quantum operation sharing (QOS). Following these unique ideas, three QOS schemes, the “HIEC” (The scheme whose messages are hidden in the entanglement correlation), “HIAO” (The scheme whose messages are hidden with the assistant operations) and “HIMB” (The scheme whose messages are hidden in the selected measurement basis), have been presented to share the single-qubit operations determinately on target states in a remote node. These schemes only require Bell states as quantum resources. Therefore, they can be directly applied in quantum networks, since Bell states are considered the basic quantum channels in quantum networks. Furthermore, after analyse on the security and resource consumptions, the task of QOS can be achieved securely and effectively in these schemes.

[1]  Qiaoyan Wen,et al.  Improving the security of multiparty quantum secret sharing against an attack with a fake signal , 2006 .

[2]  Yimin Liu,et al.  Four-party deterministic operation sharing with six-qubit cluster state , 2014, Quantum Inf. Process..

[3]  An Min Wang Combined and controlled remote implementations of partially unknown quantum operations of multiqubits using Greenberger-Horne-Zeilinger states , 2007 .

[4]  Xiu-Bo Chen,et al.  An efficient and secure multiparty quantum secret sharing scheme based on single photons , 2008 .

[5]  Zhanjun Zhang,et al.  Optimizing resource consumption, operation complexity and efficiency in quantum-state sharing , 2008 .

[6]  Yimin Liu,et al.  Deterministic single-qubit operation sharing with five-qubit cluster state , 2013, Quantum Inf. Process..

[7]  Christian Kurtsiefer,et al.  LETTER TO THE EDITOR: Secure communication with single-photon two-qubit states , 2001 .

[8]  Yuan Wang,et al.  Member expansion in quantum (t,n) threshold secret sharing schemes , 2011 .

[9]  Guihua Zeng,et al.  Secure networking quantum key distribution schemes with Greenberger–Horne–Zeilinger states , 2010 .

[10]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[11]  M. Koashi,et al.  Quantum entanglement for secret sharing and secret splitting , 1999 .

[12]  Yimin Liu,et al.  Tripartite quantum operation sharing with two asymmetric three-qubit W states in five entanglement structures , 2014, Quantum Inf. Process..

[13]  Xiaolong Su Applying Gaussian quantum discord to quantum key distribution , 2013, 1310.4253.

[14]  Su-Juan Qin,et al.  Cryptanalysis of multiparty controlled quantum secure direct communication using Greenberger-Horne-Zeilinger state , 2010 .

[15]  Zhanjun Zhang,et al.  Deterministic tripartite sharing of eight restricted sets of single-qubit operations with two Bell states or a GHZ state , 2014 .

[16]  Qiao-Yan Wen,et al.  Revisiting the security of quantum dialogue and bidirectional quantum secure direct communication , 2008 .

[17]  Xiaotian Zhu,et al.  Superconducting nanowire single-photon detectors: recent progress , 2015 .

[18]  M. Bourennane,et al.  Experimental quantum secret sharing using telecommunication fiber , 2008 .

[19]  Jian-Wei Pan,et al.  Efficient multiparty quantum-secret-sharing schemes , 2004, quant-ph/0405179.

[20]  Qiaoyan Wen,et al.  Cryptanalysis of the Hillery-Buzek-Berthiaume quantum secret-sharing protocol , 2007, 0801.2418.

[21]  R. Cleve,et al.  HOW TO SHARE A QUANTUM SECRET , 1999, quant-ph/9901025.

[22]  Liu Yimin,et al.  Remotely Sharing a Single-Qubit Operation with a Five-Qubit Genuine State , 2013 .

[23]  Zhan-jun Zhang,et al.  Shared quantum remote control: quantum operation sharing , 2011 .

[24]  Qiaoyan Wen,et al.  Cryptanalysis and improvement of multiparty quantum secret sharing schemes , 2008 .

[25]  Su-Juan Qin,et al.  An external attack on the Brádler–Dušek protocol , 2007 .

[26]  Wei Chen,et al.  Decoy-state measurement-device-independent quantum key distribution with mismatched-basis statistics , 2015 .

[27]  Qiaoyan Wen,et al.  Quantum secure direct communication over the collective amplitude damping channel , 2009 .

[28]  Guang-Can Guo,et al.  Multiuser-to-multiuser entanglement distribution based on 1550 nm polarization-entangled photons , 2015 .

[29]  N. Gisin,et al.  Experimental demonstration of quantum secret sharing , 2001 .

[30]  V. Buzek,et al.  Quantum secret sharing , 1998, quant-ph/9806063.

[31]  Gui-Lu Long,et al.  Quantum secure direct communication , 2011 .

[32]  Wen Qiao-Yan,et al.  Teleportation attack on the QSDC protocol with a random basis and order , 2008 .

[33]  S. Huelga,et al.  Remote control of restricted sets of operations: Teleportation of Angles , 2001, quant-ph/0107110.

[34]  Chao Zheng,et al.  Quantum secure direct dialogue using Einstein-Podolsky-Rosen pairs , 2014 .

[35]  Harald Weinfurter,et al.  Secure Communication with a Publicly Known Key , 2001 .

[36]  A. Szameit,et al.  A novel integrated quantum circuit for high-order W-state generation and its highly precise characterization , 2015 .

[37]  K. Boström,et al.  Deterministic secure direct communication using entanglement. , 2002, Physical review letters.

[38]  Yi-Min Liu,et al.  Generalized three-party sharing of operations on remote single qutrit , 2014 .

[39]  G. Long,et al.  Theoretically efficient high-capacity quantum-key-distribution scheme , 2000, quant-ph/0012056.

[40]  TianYu Ye Robust quantum dialogue based on a shared auxiliary logical Bell state against collective noise , 2015 .

[41]  London,et al.  Quantum Remote Control: Teleportation of Unitary Operations , 2000, quant-ph/0005061.

[42]  Su-Juan Qin,et al.  Cryptanalysis and improvement of a secure quantum sealed-bid auction , 2009 .

[43]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[44]  Yimin Liu,et al.  Quantum operation sharing with symmetric and asymmetric W states , 2013, Quantum Inf. Process..

[45]  Qing-yu Cai,et al.  The "ping-pong" protocol can be attacked without eavesdropping. , 2003, Physical review letters.

[46]  Lin Kang,et al.  Dual-lens beam compression for optical coupling in superconducting nanowire single-photon detectors , 2015 .

[47]  Qiaoyan Wen,et al.  Security of a kind of quantum secret sharing with single photons , 2011, Quantum Inf. Comput..

[48]  D. Gottesman Theory of quantum secret sharing , 1999, quant-ph/9910067.

[49]  Fuguo Deng,et al.  Improving the security of multiparty quantum secret sharing against Trojan horse attack , 2005, quant-ph/0506194.

[50]  Xin-Wei Zha,et al.  Remotely Sharing a Single-Qubit Operation via a Six-Qubit Entangled State , 2015 .

[51]  S. Qin,et al.  Robust Quantum Secure Direct Communication over Collective Rotating Channel , 2010 .

[52]  An Min Wang,et al.  Remote implementations of partially unknown quantum operations of multiqubits , 2005, quant-ph/0510209.

[53]  Heping Zeng,et al.  Single-photon detection and its applications , 2014 .

[54]  Wen Qiao-Yan,et al.  Forcible-Measurement Attack on Quantum Secure Direct Communication Protocol with Cluster State , 2008 .

[55]  Shibin Zhang,et al.  Robust EPR-pairs-based quantum secure communication with authentication resisting collective noise , 2014 .

[56]  Fuguo Deng,et al.  Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block , 2003, quant-ph/0308173.

[57]  Guihua Zeng,et al.  Quantum-cryptography network via continuous-variable graph states , 2012 .

[58]  Wen Qiao-Yan,et al.  A Special Eavesdropping on One-Sender Versus N-Receiver QSDC Protocol , 2008 .

[59]  Daoyi Dong,et al.  Multiple independent quantum states sharing under collaboration of agents in quantum networks , 2011, Quantum Information Processing.

[60]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[61]  Qiaoyan Wen,et al.  Quantum secure direct communication with χ -type entangled states , 2008 .

[62]  Zhang-Qi Yin,et al.  Quantum superposition, entanglement, and state teleportation of a microorganism on an electromechanical oscillator , 2015, 1509.03763.

[63]  Fuguo Deng,et al.  Reply to ``Comment on `Secure direct communication with a quantum one-time-pad' '' , 2004, quant-ph/0405177.

[64]  Antoni Wójcik Eavesdropping on the "ping-pong" quantum communication protocol. , 2003, Physical review letters.