Novelty-assisted Interactive Evolution Of Control Behaviors

The field of evolutionary computation is inspired by the achievements of natural evolution, in which there is no final objective. Yet the pursuit of objectives is ubiquitous in simulated evolution because evolutionary algorithms that can consistently achieve established benchmarks are lauded as successful, thus reinforcing this paradigm. A significant problem is that such objective approaches assume that intermediate stepping stones will increasingly resemble the final objective when in fact they often do not. The consequence is that while solutions may exist, searching for such objectives may not discover them. This problem with objectives is demonstrated through an experiment in this dissertation that compares how images discovered serendipitously during interactive evolution in an online system called Picbreeder cannot be rediscovered when they become the final objective of the very same algorithm that originally evolved them. This negative result demonstrates that pursuing an objective limits evolution by selecting offspring only based on the final objective. Furthermore, even when high fitness is achieved, the experimental results suggest that the resulting solutions are typically brittle, piecewise representations that only perform well by exploiting idiosyncratic features in the target. In response to this problem, the dissertation next highlights the importance of leveraging human insight during search as an alternative to articulating explicit objectives. In particular, a new approach called novelty-assisted interactive evolutionary computation (NA-IEC) combines human intuition with a method called novelty search for the first time to facilitate the serendipitous discovery of agent behaviors.

[1]  Peter Szabó,et al.  Learning to Control an Octopus Arm with Gaussian Process Temporal Difference Methods , 2005, NIPS.

[2]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[3]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[4]  Risto Miikkulainen,et al.  Incremental Evolution of Complex General Behavior , 1997, Adapt. Behav..

[5]  Risto Miikkulainen,et al.  Solving Non-Markovian Control Tasks with Neuro-Evolution , 1999, IJCAI.

[6]  Carola B. Sigrist,et al.  Vulva formation in Pristionchus pacificus relies on continuous gonadal induction , 1999, Development Genes and Evolution.

[7]  Risto Miikkulainen,et al.  Efficient Non-linear Control Through Neuroevolution , 2006, ECML.

[8]  Kenneth O. Stanley,et al.  Abstract , 1998, Clinical Neurology and Neurosurgery.

[9]  Brad Johanson,et al.  GP-Music: An Interactive Genetic Programming System for Music Generation with Automated Fitness Raters , 2007 .

[10]  Jeffrey John Ventrella Disney meets Darwin : an evolution-based interface for exploration and design of expressive animated behavior , 1994 .

[11]  Karl Sims,et al.  Artificial evolution for computer graphics , 1991, SIGGRAPH.

[12]  A. Soltoggio,et al.  Evolutionary and Computational Advantages of Neuromodulated Plasticity , 2008 .

[13]  Frank Neumann,et al.  Do additional objectives make a problem harder? , 2007, GECCO '07.

[14]  D. Goldberg,et al.  Escaping hierarchical traps with competent genetic algorithms , 2001 .

[15]  L. Darrell Whitley,et al.  Fundamental Principles of Deception in Genetic Search , 1990, FOGA.

[16]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[17]  Gillian M. Hayes,et al.  Robot Shaping --- Principles, Methods and Architectures , 1996 .

[18]  Samir W. Mahfoud Niching methods for genetic algorithms , 1996 .

[19]  Jean-Baptiste Mouret Novelty-Based Multiobjectivization , 2011 .

[20]  Kenneth O. Stanley,et al.  Picbreeder: A Case Study in Collaborative Evolutionary Exploration of Design Space , 2011, Evolutionary Computation.

[21]  Gary B. Lamont,et al.  Multiobjective Evolutionary Algorithms: Analyzing the State-of-the-Art , 2000, Evolutionary Computation.

[22]  R. Pfeifer,et al.  Evolving Complete Agents using Artificial Ontogeny , 2003 .

[23]  A. E. Eiben,et al.  Introduction to Evolutionary Computing , 2003, Natural Computing Series.

[24]  Jon Louis Bentley,et al.  Multidimensional binary search trees used for associative searching , 1975, CACM.

[25]  Julian Francis Miller,et al.  Evolving a Self-Repairing, Self-Regulating, French Flag Organism , 2004, GECCO.

[26]  Dario Floreano,et al.  Exploring the T-Maze: Evolving Learning-Like Robot Behaviors Using CTRNNs , 2003, EvoWorkshops.

[27]  Kenneth O. Stanley,et al.  Generating large-scale neural networks through discovering geometric regularities , 2007, GECCO '07.

[28]  John R. Koza,et al.  Genetic programming 2 - automatic discovery of reusable programs , 1994, Complex Adaptive Systems.

[29]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[30]  Marco Colombetti,et al.  Robot shaping: developing situated agents through learning , 1992 .

[31]  Hideyuki Takagi,et al.  Interactive evolutionary computation: fusion of the capabilities of EC optimization and human evaluation , 2001, Proc. IEEE.

[32]  Kalyanmoy Deb,et al.  Multi-objective Genetic Algorithms: Problem Difficulties and Construction of Test Problems , 1999, Evolutionary Computation.

[33]  L. Buşoniu Evolutionary function approximation for reinforcement learning , 2006 .

[34]  Charles Ofria,et al.  Evolving coordinated quadruped gaits with the HyperNEAT generative encoding , 2009, 2009 IEEE Congress on Evolutionary Computation.

[35]  Stewart W. Wilson,et al.  Not) Evolving Collective Behaviours in Synthetic Fish , 1996 .

[36]  David B. Fogel,et al.  Evolving Neural Control Systems , 1995, IEEE Expert.

[37]  Joshua R. Smith Designing Biomorphs with an Interactive Genetic Algorithm , 1991, ICGA.

[38]  R. Dawkins The Blind Watchmaker , 1986 .

[39]  Jordan B. Pollack,et al.  Creating High-Level Components with a Generative Representation for Body-Brain Evolution , 2002, Artificial Life.

[40]  Markus Olhofer,et al.  Towards Directed Open-Ended Search by a Novelty Guided Evolution Strategy , 2010, PPSN.

[41]  Kenneth O. Stanley,et al.  Constraining connectivity to encourage modularity in HyperNEAT , 2011, GECCO '11.

[42]  Gary B. Lamont,et al.  Evolutionary algorithms for solving multi-objective problems, Second Edition , 2007, Genetic and evolutionary computation series.

[43]  Xin Yao,et al.  Evolutionary programming made faster , 1999, IEEE Trans. Evol. Comput..

[44]  Penousal Machado,et al.  The Art of Artificial Evolution: A Handbook on Evolutionary Art and Music , 2007 .

[45]  Kenneth O. Stanley,et al.  Exploiting Open-Endedness to Solve Problems Through the Search for Novelty , 2008, ALIFE.

[46]  L. Darrell Whitley,et al.  Remapping Hyperspace During Genetic Search: Canonical Delta Folding , 1992, FOGA.

[47]  Charles E. Hughes,et al.  Conflict Resolution and a Framework for Collaborative Interactive Evolution , 2006, AAAI.

[48]  Charles E. Hughes,et al.  Evolving plastic neural networks with novelty search , 2010, Adapt. Behav..

[49]  Jeffrey Ventrella Disney meets Darwin-the evolution of funny animated figures , 1995, Proceedings Computer Animation'95.

[50]  Andrew W. Moore,et al.  Generalization in Reinforcement Learning: Safely Approximating the Value Function , 1994, NIPS.

[51]  Phil Husbands,et al.  Evolution of central pattern generators for bipedal walking in a real-time physics environment , 2002, IEEE Trans. Evol. Comput..

[52]  Charles E. Hughes,et al.  How novelty search escapes the deceptive trap of learning to learn , 2009, GECCO.

[53]  Kenneth O. Stanley,et al.  Autonomous Evolution of Topographic Regularities in Artificial Neural Networks , 2010, Neural Computation.

[54]  Larry D. Pyeatt,et al.  A comparison between cellular encoding and direct encoding for genetic neural networks , 1996 .

[55]  Penousal Machado,et al.  All the Truth About NEvAr , 2002, Applied Intelligence.

[56]  David Hart,et al.  Toward greater artistic control for interactive evolution of images and animation , 2006, SIGGRAPH '06.

[57]  John A. Biles,et al.  GenJam: A Genetic Algorithm for Generating Jazz Solos , 1994, ICMC.

[58]  Xin Yao,et al.  Evolving artificial neural networks , 1999, Proc. IEEE.

[59]  Linda World,et al.  Aesthetic Selection: The Evolutionary Art of Steven Rooke [About the Cover] , 1996, IEEE Computer Graphics and Applications.

[60]  G. L. Nelson Sonomorphs: An application of genetic algorithms to the growth and development of musical organisms , 1993 .

[61]  Risto Miikkulainen,et al.  A Taxonomy for Artificial Embryogeny , 2003, Artificial Life.

[62]  Thomas Jansen,et al.  On the analysis of the (1+1) evolutionary algorithm , 2002, Theor. Comput. Sci..

[63]  Satinder Singh Transfer of Learning by Composing Solutions of Elemental Sequential Tasks , 1992, Mach. Learn..

[64]  L. Darrell Whitley,et al.  Delta Coding: An Iterative Search Strategy for Genetic Algorithms , 1991, ICGA.

[65]  Conor Ryan,et al.  Pygmies and civil servants , 1994 .

[66]  Kenneth O. Stanley,et al.  Abandoning Objectives: Evolution Through the Search for Novelty Alone , 2011, Evolutionary Computation.

[67]  Nao and Iba Hitoshi Tokui,et al.  Music Composition with Interactive Evolutionary Computation , 2000 .

[68]  W. Kier,et al.  Tongues, tentacles and trunks: the biomechanics of movement in muscular‐hydrostats , 1985 .

[69]  L.-J. Lin,et al.  Hierarchical learning of robot skills by reinforcement , 1993, IEEE International Conference on Neural Networks.

[70]  Andrew W. Moore,et al.  Reinforcement Learning: A Survey , 1996, J. Artif. Intell. Res..

[71]  Richard A. Watson,et al.  Reducing Local Optima in Single-Objective Problems by Multi-objectivization , 2001, EMO.

[72]  P. K. Chattopadhyay,et al.  Evolutionary programming techniques for economic load dispatch , 2003, IEEE Trans. Evol. Comput..

[73]  Jeffrey J. Ventrella,et al.  Explorations in the emergence of morphology a~d locomotion behavior in animated characters , 1994 .

[74]  Kenneth O. Stanley A Hypercube-Based Indirect Encoding for Evolving Large-Scale Neural Networks , 2009 .

[75]  Kenneth O. Stanley,et al.  A novel generative encoding for exploiting neural network sensor and output geometry , 2007, GECCO '07.

[76]  William B. Langdon,et al.  Pfeiffer - A Distributed Open-ended Evolutionary System , 2005 .

[77]  David E. Goldberg,et al.  Genetic Algorithms with Sharing for Multimodalfunction Optimization , 1987, ICGA.

[78]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[79]  Kenneth O. Stanley,et al.  Compositional Pattern Producing Networks : A Novel Abstraction of Development , 2007 .

[80]  Risto Miikkulainen,et al.  Evolving Neural Networks through Augmenting Topologies , 2002, Evolutionary Computation.

[81]  Sebastian Risi,et al.  Enhancing es-hyperneat to evolve more complex regular neural networks , 2011, GECCO '11.

[82]  David E. Goldberg,et al.  A niched Pareto genetic algorithm for multiobjective optimization , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[83]  T. Metzinger The evolution of evolvability Ruth Garret Millikan Varieties of Meaning: The 2002 Jean Nicod Lectures , 2005, Trends in Cognitive Sciences.

[84]  Dario Floreano,et al.  Evolutionary Advantages of Neuromodulated Plasticity in Dynamic, Reward-based Scenarios , 2008, ALIFE.

[85]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[86]  Kenneth O. Stanley,et al.  Efficiently evolving programs through the search for novelty , 2010, GECCO '10.

[87]  Einoshin Suzuki,et al.  Distributed Multi-objective GA for Generating Comprehensive Pareto Front in Deceptive Optimization Problems , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[88]  Dario Floreano,et al.  Neuroevolution: from architectures to learning , 2008, Evol. Intell..

[89]  Kenneth O. Stanley,et al.  Interactively evolving harmonies through functional scaffolding , 2011, GECCO '11.

[90]  D. Wolpert,et al.  No Free Lunch Theorems for Search , 1995 .

[91]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[92]  Kenneth O. Stanley,et al.  Revising the evolutionary computation abstraction: minimal criteria novelty search , 2010, GECCO '10.

[93]  Scott Draves,et al.  The Electric Sheep Screen-Saver: A Case Study in Aesthetic Evolution , 2005, EvoWorkshops.

[94]  Risto Miikkulainen,et al.  Competitive Coevolution through Evolutionary Complexification , 2011, J. Artif. Intell. Res..

[95]  Thomas Bäck,et al.  Evolutionary computation: Toward a new philosophy of machine intelligence , 1997, Complex..

[96]  Edwin D. de Jong,et al.  The Incremental Pareto-Coevolution Archive , 2004, GECCO.

[97]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[98]  Shimon Whiteson,et al.  Critical factors in the performance of novelty search , 2011, GECCO '11.

[99]  Gunar E. Liepins,et al.  Deceptiveness and Genetic Algorithm Dynamics , 1990, FOGA.

[100]  Michiel van de Panne,et al.  Guided Optimization for Balanced Locomotion , 1995 .

[101]  J. Pollack,et al.  Challenges in coevolutionary learning: arms-race dynamics, open-endedness, and medicocre stable states , 1998 .

[102]  Jimmy Secretan,et al.  Picbreeder: evolving pictures collaboratively online , 2008, CHI.

[103]  David B. Fogel,et al.  Evolutionary Computation: The Fossil Record , 1998 .

[104]  Tamar Flash,et al.  Dynamic model of the octopus arm. I. Biomechanics of the octopus reaching movement. , 2005, Journal of neurophysiology.