Scalar, spinor, and photon fields under relativistic cavity motion

We analyze quantized scalar, spinor, and photon fields in a mechanically rigid cavity that is accelerated in Minkowski spacetime, in a recently introduced perturbative small-acceleration formalism that allows the velocities to become relativistic, with a view to applications in relativistic quantum information. A scalar field is analyzed with both Dirichlet and Neumann boundary conditions, and a photon field under perfect conductor boundary conditions is shown to decompose into Dirichlet-like and Neumann-like polarization modes. The Dirac spinor is analyzed with a nonvanishing mass and with dimensions transverse to the acceleration, and the MIT bag boundary condition is shown to exclude zero modes. Unitarity of time evolution holds for smooth accelerations but fails for discontinuous accelerations in spacetime dimensions (3+1) and higher. As an application, the experimental desktop mode-mixing scenario proposed for a scalar field by Bruschi et al. [New. J. Phys. 15, 073052 (2013)] is shown to apply also to the photon field.

[1]  Atsushi Higuchi,et al.  The Unruh effect and its applications , 2007, 0710.5373.

[2]  V. Dodonov,et al.  Current status of the dynamical Casimir effect , 2010, 1004.3301.

[3]  Nicolai Friis,et al.  Entanglement generation in relativistic quantum fields , 2012, 1204.0617.

[4]  Tianming Zhao,et al.  Huge Casimir effect at finite temperature in electromagnetic Rindler space. , 2011, Optics letters.

[5]  E. Elizalde,et al.  Casimir energy for a massive fermionic quantum field with a spherical boundary , 1998 .

[6]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[7]  David Edward Bruschi,et al.  Entanglement generation in relativistic cavity motion , 2013, Journal of Physics: Conference Series.

[8]  A. Iorio Using Weyl symmetry to make graphene a real lab for fundamental physics , 2012, 1207.6929.

[9]  A. Pourkabirian,et al.  Observation of the dynamical Casimir effect in a superconducting circuit , 2011, Nature.

[10]  N. D. Birrell,et al.  Quantum fields in curved space , 2007 .

[11]  Hawking radiation for Dirac spinors on the RP 3 geon , 2004 .

[12]  W. Unruh Notes on black-hole evaporation , 1976 .

[13]  M. Horodecki,et al.  Violating Bell inequality by mixed spin- {1}/{2} states: necessary and sufficient condition , 1995 .

[14]  Paul M. Alsing,et al.  Observer-dependent entanglement , 2012, 1210.2223.

[15]  D. T. Alves,et al.  Quantum radiation reaction force on a one-dimensional cavity with two relativistic moving mirrors , 2009, 0912.1802.

[16]  David Edward Bruschi,et al.  Motion generates entanglement , 2012, 1201.0549.

[17]  David Edward Bruschi,et al.  Relativistic motion generates quantum gates and entanglement resonances. , 2012, Physical review letters.

[18]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[19]  N. C. Menicucci,et al.  Fundamental quantum optics experiments conceivable with satellites—reaching relativistic distances and velocities , 2012, 1206.4949.

[20]  G. Moore Quantum Theory of the Electromagnetic Field in a Variable-Length One-Dimensional Cavity , 1970 .

[21]  L. Ford,et al.  Effects of vacuum fluctuation suppression on atomic decay rates , 2009, 0907.1638.

[22]  T. M. Dunster Bessel functions of purely imaginary order, with an application to second-order linear differential equations having a large parameter , 1990 .

[23]  F. W. J. Olver,et al.  The asymptotic expansion of bessel functions of large order , 1954, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[24]  M. Lewenstein,et al.  Dirac equation for cold atoms in artificial curved spacetimes , 2010, 1010.1716.

[25]  G. Labonté On the nature of “strong” Bogoliubov transformations for fermions , 1974 .

[26]  David Edward Bruschi,et al.  Voyage to Alpha Centauri: Entanglement degradation of cavity modes due to motion , 2011, 1105.1875.

[27]  L. Parker,et al.  QUANTIZED FIELDS AND PARTICLE CREATION IN EXPANDING UNIVERSES. II. , 1969 .

[28]  David Shale,et al.  LINEAR SYMMETRIES OF FREE BOSON FIELDS( , 1962 .

[29]  E Solano,et al.  Relativistic quantum teleportation with superconducting circuits. , 2012, Physical review letters.

[30]  M. Visser,et al.  Analogue Gravity , 2005, Living reviews in relativity.

[31]  David Edward Bruschi,et al.  Kinematic entanglement degradation of fermionic cavity modes , 2011, 1110.6756.

[32]  S. Hawking Particle creation by black holes , 1975 .

[33]  S. Takagi Vacuum Noise and Stress Induced by Uniform Acceleration Hawking-Unruh Effect in Rindler Manifold of Arbitrary Dimension , 1986 .

[34]  V. Weisskopf,et al.  A New Extended Model of Hadrons , 1974 .

[35]  J. Faraut,et al.  Self-adjoint extensions of operators and the teaching of quantum mechanics , 2001, quant-ph/0103153.

[36]  A. Rieckers,et al.  Squeezing Bogoliubov transformations on the infinite mode CCR‐algebra , 1996 .

[37]  Shi-Liang Zhu,et al.  Relativistic quantum effects of Dirac particles simulated by ultracold atoms , 2012, 1203.5949.

[38]  M. Walton,et al.  On Robin boundary conditions and the Morse potential in quantum mechanics , 2010, 1002.2139.

[39]  Nicolai Friis,et al.  Fermionic mode entanglement in quantum information , 2012, 1211.7217.

[40]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[41]  Margaret Nichols Trans , 2015, De-centering queer theory.

[42]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[43]  Daniele Faccio,et al.  Mode-mixing quantum gates and entanglement without particle creation in periodically accelerated cavities , 2013 .