A simple and accurate mixed P0–Q1 solver for the Maxwell–Dirac equations

Abstract In this paper we propose and analyze a simple but accurate numerical method for solving the Maxwell–Dirac system for relativistic particles submitted to an external ultrashort intense pulse. Maxwell’s equations are solved using a second order finite element method in space and time. The Dirac equation solver is based on a method of characteristics with a P 0 formulation of the Dirac spinor field. Numerical simulations are provided to show the efficiency of the method.

[1]  Jean-Michel Ghidaglia,et al.  Footbridge between finite volumes and finite elements with applications to CFD , 2001 .

[2]  T. Brabec,et al.  Semiclassical Dirac theory of tunnel ionization. , 2002, Physical review letters.

[3]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[4]  F. Faisal A four-component Dirac theory of ionization of a hydrogen molecular ion in a super-intense laser field , 2009, 0907.1690.

[5]  Leonard Gross,et al.  The cauchy problem for the coupled maxwell and dirac equations , 2010 .

[6]  J. Chadam Global solutions of the Cauchy problem for the (classical) coupled Maxwell-Dirac equations in one space dimension , 1973 .

[7]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[8]  André D. Bandrauk,et al.  A numerical Maxwell-Schrödinger model for intense laser-matter interaction and propagation , 2007, Comput. Phys. Commun..

[9]  R. Schutzhold,et al.  Catalysis of Schwinger vacuum pair production , 2009, 0908.0948.

[10]  Weizhu Bao,et al.  An efficient and stable numerical method for the Maxwell-Dirac system , 2004 .

[11]  A. Bandrauk,et al.  Improved exponential split operator method for solving the time-dependent Schrödinger equation , 1991 .

[12]  P. Raviart,et al.  Numerical Approximation of Hyperbolic Systems of Conservation Laws , 1996, Applied Mathematical Sciences.

[13]  J. Craggs Applied Mathematical Sciences , 1973 .

[14]  Guido R. Mocken,et al.  FFT-split-operator code for solving the Dirac equation in 2+1 dimensions , 2008, Comput. Phys. Commun..

[15]  Attosecond pulse generation from aligned molecules?dynamics and propagation in H2+ , 2008 .

[16]  Paul Indelicato,et al.  Computational approaches of relativistic models in quantum chemistry , 2003 .

[17]  Eva Lindroth,et al.  Solution of the Dirac equation for hydrogenlike systems exposed to intense electromagnetic pulses , 2009 .

[18]  Convergence of the Dirac–Maxwell System to the Vlasov–Poisson System , 2007 .

[19]  Nikolaos Bournaveas,et al.  Local existence for the Maxwell-Dirac equations in three space dimensions , 1996 .

[20]  Jacques Chazarain,et al.  Introduction to the theory of linear partial differential equations , 1982 .

[21]  J. Simon,et al.  Asymptotic Completeness, Global Existence and the Infrared Problem for the Maxwell-Dirac Equations , 1995, hep-th/9502061.

[22]  Rainer Grobe,et al.  Numerical approach to solve the time-dependent Dirac equation , 1999 .

[23]  J. M. Thomas,et al.  Introduction à l'analyse numérique des équations aux dérivées partielles , 1983 .

[24]  Alain Dervieux,et al.  Computation of unsteady flows with mixed finite volume/finite element upwind methods , 1998 .

[25]  Chunxiong Zheng,et al.  A time-splitting spectral scheme for the Maxwell-Dirac system , 2005, 1205.0368.

[26]  Guido R. Mocken,et al.  Quantum dynamics of relativistic electrons , 2004 .

[27]  Philippe Bechouche,et al.  On the asymptotic analysis of the Dirac-Maxwell system in the nonrelativistic limit , 2003 .

[28]  André D. Bandrauk,et al.  Multiresolution scheme for Time-Dependent Schrödinger Equation , 2010, Comput. Phys. Commun..

[29]  Christoph H. Keitel,et al.  Relativistic high-power laser–matter interactions , 2006 .