Enhanced dissipation and Hörmander's hypoellipticity

We examine the phenomenon of enhanced dissipation from the perspective of Hörmander’s classical theory of second order hypoelliptic operators [31]. Consider a passive scalar in a shear flow, whose evolution is described by the advection–diffusion equation ∂tf + b(y)∂xf − ν∆f = 0 on T× (0, 1)× R+ with periodic, Dirichlet, or Neumann conditions in y. We demonstrate that decay is enhanced on the timescale T ∼ ν, where N−1 is the maximal order of vanishing of the derivative b(y) of the shear profile and N = 0 for monotone shear flows. In the periodic setting, we recover the known timescale of Bedrossian and Coti Zelati [8]. Our results are new in the presence of boundaries. CONTENTS

[1]  Joseph J. Kohn,et al.  Pseudo-di erential operators and hypoellipticity , 1973 .

[2]  Zhifei Zhang,et al.  Pseudospectral and spectral bounds for the Oseen vertices operator , 2017, Annales scientifiques de l'École normale supérieure.

[3]  Dongyi Wei Diffusion and mixing in fluid flow via the resolvent estimate , 2018, Science China Mathematics.

[4]  Michele Coti Zelati,et al.  On the Relation between Enhanced Dissipation Timescales and Mixing Rates , 2018, Communications on Pure and Applied Mathematics.

[5]  A. Kolmogoroff,et al.  Zufallige Bewegungen (Zur Theorie der Brownschen Bewegung) , 1934 .

[6]  J. Bedrossian,et al.  Enhanced Dissipation, Hypoellipticity, and Anomalous Small Noise Inviscid Limits in Shear Flows , 2015, 1510.08098.

[7]  N. Masmoudi,et al.  Inviscid damping and the asymptotic stability of planar shear flows in the 2D Euler equations , 2013, 1306.5028.

[8]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[9]  J. Bedrossian,et al.  Quantitative spectral gaps and uniform lower bounds in the small noise limit for Markov semigroups generated by hypoelliptic stochastic differential equations , 2020, 2007.13297.

[10]  Michele Coti Zelati,et al.  A stochastic approach to enhanced diffusion , 2019, ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE.

[11]  Fei Wang,et al.  The Sobolev Stability Threshold for 2D Shear Flows Near Couette , 2016, J. Nonlinear Sci..

[12]  Siming He Enhanced dissipation, hypoellipticity for passive scalar equations with fractional dissipation , 2021 .

[13]  B. Farkas,et al.  Maximal regularity for Kolmogorov operators in L2 spaces with respect to invariant measures , 2006 .

[14]  Zhifei Zhang,et al.  Enhanced dissipation for the Kolmogorov flow via the hypocoercivity method , 2019, Science China Mathematics.

[15]  L. Silvestre A New Regularization Mechanism for the Boltzmann Equation Without Cut-Off , 2014, 1412.4706.

[16]  R. Danchin,et al.  Fourier Analysis and Nonlinear Partial Differential Equations , 2011 .

[17]  F. Nier,et al.  Spectral asymptotics for large skew-symmetric perturbations of the harmonic oscillator , 2008, 0809.0574.

[18]  Nicolas Lerner,et al.  Metrics on the Phase Space and Non-Selfadjoint Pseudo-Differential Operators , 2010 .

[19]  R. Aris A - * On the Dispersion of A Solute in A Fluid Flowing Through A Tube , 1999 .

[20]  A. Ionescu,et al.  Inviscid Damping Near the Couette Flow in a Channel , 2018, Communications in Mathematical Physics.

[21]  C. Mouhot,et al.  Harnack inequality for kinetic Fokker-Planck equations with rough coefficients and application to the Landau equation , 2016, ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE.

[22]  Vlad Vicol,et al.  Enhanced Dissipation and Inviscid Damping in the Inviscid Limit of the Navier–Stokes Equations Near the Two Dimensional Couette Flow , 2014, 1408.4754.

[23]  F. Nier,et al.  Hypoelliptic Estimates and Spectral Theory for Fokker-Planck Operators and Witten Laplacians , 2005 .

[24]  L. Hörmander Hypoelliptic second order differential equations , 1967 .

[25]  P. Constantin,et al.  Diffusion and mixing in fluid flow , 2005 .

[26]  Yan Guo,et al.  The Landau Equation in a Periodic Box , 2002 .

[27]  M. C. DE GIORGI–NASH–MOSER AND HÖRMANDER THEORIES: NEW INTERPLAYS , 2018 .

[28]  Zhifei Zhang,et al.  Linear inviscid damping and enhanced dissipation for the Kolmogorov flow , 2017, Advances in Mathematics.

[29]  Osman Chaudhary,et al.  Rigorous Justification of Taylor Dispersion via Center Manifolds and Hypocoercivity , 2018, Archive for Rational Mechanics and Analysis.

[30]  Pseudospectrum for Oseen Vortices Operators , 2011, 1109.4798.

[31]  Michele Coti Zelati,et al.  Separation of time-scales in drift-diffusion equations on R2 , 2019, Journal de Mathématiques Pures et Appliquées.

[32]  Michele Coti Zelati Stable mixing estimates in the infinite Péclet number limit , 2019, Journal of Functional Analysis.

[33]  S. Armstrong,et al.  Variational methods for the kinetic Fokker-Planck equation , 2019, 1902.04037.

[34]  Resolvent estimates for a two-dimensional non-self-adjoint operator , 2012 .

[35]  M. Bramanti An Invitation to Hypoelliptic Operators and Hörmander's Vector Fields , 2013 .

[36]  L. Hörmander The analysis of linear partial differential operators , 1990 .

[37]  Herbert Amann,et al.  Operator‐Valued Fourier Multipliers, Vector ‐ Valued Besov Spaces, and Applications , 1997 .

[38]  Margaret Beck,et al.  Metastability and rapid convergence to quasi-stationary bar states for the two-dimensional Navier–Stokes equations , 2013, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[39]  T. Gallay Enhanced Dissipation and Axisymmetrization of Two-Dimensional Viscous Vortices , 2017, Archive for Rational Mechanics and Analysis.

[40]  Geoffrey Ingram Taylor,et al.  The dispersion of matter in turbulent flow through a pipe , 1954, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[41]  Jacob Bedrossian,et al.  A regularity method for lower bounds on the Lyapunov exponent for stochastic differential equations , 2021, Inventiones mathematicae.

[42]  Martin Hairer,et al.  On Malliavinʼs proof of Hörmanderʼs theorem , 2011, 1103.1998.

[43]  L. Silvestre,et al.  The weak Harnack inequality for the Boltzmann equation without cut-off , 2016, Journal of the European Mathematical Society.

[44]  Michele Coti Zelati,et al.  Enhanced Dissipation in the Navier–Stokes Equations Near the Poiseuille Flow , 2019, 1901.01571.