Nutrient and Temperature Limitation of Bacterioplankton Growth in Temperate Lakes

[1]  F. T.,et al.  Phytoplankton-bacteria interactions : an apparent paradox ? Analysis of a model system with both competition and commensalism , 2006 .

[2]  E. Lindström,et al.  Response of a member of the Verrucomicrobia, among the dominating bacteria in a hypolimnion, to increased phosphorus availability , 2004 .

[3]  Y. Prairie,et al.  Bacterial metabolism and growth efficiency in lakes: The importance of phosphorus availability , 2004 .

[4]  M. Simon,et al.  Growth limitation of planktonic bacteria in a large mesotrophic lake , 1995, Microbial Ecology.

[5]  J. Elser,et al.  Nutrient enrichment and nutrient regeneration stimulate bacterioplankton growth , 1995, Microbial Ecology.

[6]  M. Pace,et al.  Regulation of planktonic bacterial growth rates: The effects of temperature and resources , 2004, Microbial Ecology.

[7]  T. Andersen,et al.  Is phosphorus limitation of planktonic heterotrophic bacteria and accumulation of degradable DOC a normal phenomenon in phosphorus-limited systems? A microcosm study. , 2003, FEMS microbiology ecology.

[8]  K. Jürgens,et al.  Interaction of Nutrient Limitation and Protozoan Grazing Determines the Phenotypic Structure of a Bacterial Community , 2003, Microbial Ecology.

[9]  Katarina Vrede,et al.  Elemental Composition (C, N, P) and Cell Volume of Exponentially Growing and Nutrient-Limited Bacterioplankton , 2002, Applied and Environmental Microbiology.

[10]  L. Tranvik,et al.  Large Differences in the Fraction of Active Bacteria in Plankton, Sediments, and Biofilm , 2002, Microbial Ecology.

[11]  L. Tranvik,et al.  Large differences in the active fraction of bacteria in plankton, sediments, and epiphytic biofilms. , 2002 .

[12]  J. Pernthaler,et al.  Precision of bacterioplankton biomass determination: a comparison of two fluorescent dyes, and of allometric and linear volume-to-carbon conversion factors , 2001 .

[13]  E. Casamayor,et al.  Changes in marine bacterioplankton phylogenetic composition during incubations designed to measure biogeochemically significant parameters , 2001 .

[14]  W. Wiebe,et al.  Temperature and substrates as interactive limiting factors for marine heterotrophic bacteria , 2001 .

[15]  J. Grover,et al.  Seasonal patterns of substrate utilization by bacterioplankton: case studies in four temperate lakes of different latitudes , 2000 .

[16]  Robert W. Sanders,et al.  Responses of bacterioplankton and phytoplankton to organic carbon and inorganic nutrient additions in contrasting oceanic ecosystems , 2000 .

[17]  R. Amann,et al.  Changes in community composition during dilution cultures of marine bacterioplankton as assessed by flow cytometric and molecular biological techniques. , 2000, Environmental microbiology.

[18]  M. Cottrell,et al.  Natural Assemblages of Marine Proteobacteria and Members of the Cytophaga-Flavobacter Cluster Consuming Low- and High-Molecular-Weight Dissolved Organic Matter , 2000, Applied and Environmental Microbiology.

[19]  L. Arvola,et al.  Growth and production of bacterioplankton in a deep mesohumic boreal lake , 2000 .

[20]  O. Vadstein Heterotrophic, Planktonic Bacteria and Cycling of Phosphorus , 2000 .

[21]  A. Karlsson,et al.  Effects of nutrients (phosphorous, nitrogen, and carbon) and zooplankton on bacterioplankton and phytoplankton—a seasonal study , 1999 .

[22]  Nedwell,et al.  Effect of low temperature on microbial growth: lowered affinity for substrates limits growth at low temperature. , 1999, FEMS microbiology ecology.

[23]  K. Vrede Effects of inorganic nutrients and zooplankton on the growth of heterotrophic bacterioplankton-enclosure experiments in an oligotrophic clearwater lake , 1999 .

[24]  J. Urabe,et al.  Temporal and Vertical Difference in Factors Limiting Growth Rate of Heterotrophic Bacteria in Lake Biwa , 1999, Microbial Ecology.

[25]  M. Simon,et al.  TEMPERATURE CONTROL OF BACTERIOPLANKTON GROWTH IN A TEMPERATE LARGE LAKE , 1998 .

[26]  F. Rassoulzadegan,et al.  P limitation of heterotrophic bacteria and phytoplankton in the northwest Mediterranean , 1998 .

[27]  J. Cotner,et al.  Phosphorus-limited bacterioplankton growth in the Sargasso Sea , 1997 .

[28]  Peter Blomqvist,et al.  Nutrient limitation of bacterioplankton, autotrophic and mixotrophic phytoplankton, and heterotrophic nanoflagellates in Lake Örträsket , 1996 .

[29]  M. Pace,et al.  Regulation of bacteria by resources and predation tested in whole‐lake experiments , 1996 .

[30]  K. Vrede Regulation of bacterioplankton production and biomass in an oligotrophic clearwater lake - The importance of the phytoplankton community , 1996 .

[31]  M. Heldal,et al.  Content of carbon, nitrogen, oxygen, sulfur and phosphorus in native aquatic and cultured bacteria , 1996 .

[32]  M. Coveney,et al.  Biomass, production, and specific growth rate of bacterioplankton and coupling to phytoplankton in an oligotrophic lake , 1995 .

[33]  P. Giorgio,et al.  Increase in the proportion of metabolically active bacteria along gradients of enrichment in freshwater and marine plankton: implications for estimates of bacterial growth and production rates , 1995 .

[34]  R. P. Hassett,et al.  Nutrient limitation of bacterial growth and rates of bacterivory in lakes and oceans: a comparative study , 1995 .

[35]  M. Middelboe,et al.  A cross-system analysis of labile dissolved organic carbon , 1995 .

[36]  K. Vrede,et al.  Plankton and water chemistry in Lake Njupfatet before and after liming , 1995 .

[37]  G. Likens,et al.  Population dynamics of bacterioplankton in an oligotrophic lake , 1995 .

[38]  Kalevi Salonen,et al.  The effect of substrate stoichiometry on microbial activity and carbon degradation in humic lakes , 1994 .

[39]  S. Kjelleberg,et al.  Starvation and Recovery of Vibrio , 1993 .

[40]  S. Kjelleberg Starvation in Bacteria , 1993, Springer US.

[41]  W. Lewis,et al.  Nutrient limitation of bacterioplankton growth in Lake Dillon, Colorado , 1992 .

[42]  J. Priscu,et al.  Bacterioplankton nutrient deficiency in a eutrophic lake , 1992 .

[43]  F. Azam,et al.  Significance of bacterial biomass in lakes and the ocean: comparison to phytoplankton biomass and biogeochemical implications , 1992 .

[44]  Tara Toolan,et al.  Inorganic Phosphorus Stimulation of Bacterioplankton Production in a Meso-Eutrophic Lake , 1991, Applied and environmental microbiology.

[45]  R. J. Thompson,et al.  Bacterial responses to temperature and substrate concentration during the Newfoundland spring bloom , 1991 .

[46]  D. Currie Large‐scale variability and interactions among phytoplankton, bacterioplankton, and phosphorus , 1990 .

[47]  R. Bell An explanation for the variability in the conversion factor deriving bacterial cell production from incorporation of [3H] thymidine , 1990 .

[48]  T. Andersen,et al.  Carbon metabolism in a humic lake: Pool sires and cycling through zooplankton , 1990 .

[49]  K. Porter,et al.  Seasonal patterns of bacterivory by flagellates, ciliates, rotifers, and cladocerans in a freshwater planktonic community , 1989 .

[50]  T. J. Breen,et al.  Biostatistical Analysis (2nd ed.). , 1986 .

[51]  G. Bratbak,et al.  Phytoplankton-bacteria interactions: an apparant paradox? Analysis of a model system with both competition and commensalism , 1985 .

[52]  R. A. Groeneveld,et al.  Practical Nonparametric Statistics (2nd ed). , 1981 .

[53]  J. S. Hunter,et al.  Statistics for Experimenters: An Introduction to Design, Data Analysis, and Model Building. , 1979 .

[54]  W. J. Conover,et al.  Practical Nonparametric Statistics , 1972 .

[55]  R. Robinson,et al.  A New Spectrophotometric Method for the Determination of Nitrite in Sea Water , 1952 .

[56]  O. Vadstein Heterotrophic , Planktonic Bacteria and Cycling of Phosphorus Phosphorus Requirements , Competitive Ability , and Food Web Interactions , 2022 .