Coupled electron-transfer and spin-exchange reactions

Abstract Electron-transfers accompanied by a change in metal atom spin-state occur widely in chemistry and biology. An appropriate framework for interpreting such behavior is an electrochemical scheme of squares consisting of two one-electron electrode reactions and two spin-equilibrium steps. The presence of coupled electron-transfers and spin-exchanges is reflected in the thermodynamic and kinetic parameters of such events. Oxidation–reduction potentials and electron-transfer rate constants depend on the positions of the spin-state equilibria in the two oxidation states. Electrochemical activation parameters exhibit significant contributions from the large enthalpic and entropic differences that characterize spin-exchange reactions. The entropy of an electrochemical half-reaction, Δ S ° rc , coupled to a spin-exchange reflects the increases in vibrational and electronic entropy that accompany low- to high-spin conversion. Electrochemical enthalpies and entropies of activation, Δ H ‡ and Δ S ‡ , are influenced by the temperature dependence of the accompanying spin-state transitions and are useful in mechanism diagnosis. The present review describes examples from the literature and our own laboratory regarding Fe(III/II) (d 5 /d 6 ) and Co(III/II) (d 6 /d 7 ) couples that exhibit the above behavior.

[1]  L. A. Ochrymowycz,et al.  Effect of conformational constraints on gated electron-transfer kinetics. 3. Copper(II/I) complexes with cis- and trans-cyclopentanediyl-1,4,8,11-tetrathiacyclotetradecane. , 2000, Inorganic chemistry.

[2]  J. Hupp,et al.  The Prediction of Electrochemical Reactivities from Contemporary Theory: Some Comparisons with Experiment. , 1984 .

[3]  D. Turner,et al.  Intersystem-crossing dynamics and coordination geometry changes observed by ultrasonic and laser temperature-jump relaxation of the 2T .dblharw. 6A spin equilibrium of hexadentate iron(III) complexes in solution , 1980 .

[4]  J. McGarvey,et al.  Kinetics of spin-state interconversion in iron(II) complexes in solution as a function of pressure: activation volumes for the 1A1 .dblharw. 5T2 spin change , 1990 .

[5]  J. Ibers,et al.  Effect of metal-ligand bond distances on rates of electron-transfer reactions. Crystal structures of hexaammineruthenium(II) iodide, [Ru(NH3)6]I2, and hexaammineruthenium(III) tetrafluoroborate, [Ru(NH3)6][BF4]3 , 1971 .

[6]  M. Tweedle,et al.  Dynamics of intersystem crossing processes in solution for six-coordinate d5, d6, and d7 spin-equilibrium metal complexes of iron(III), iron(II), and cobalt(II) , 1978 .

[7]  Rudolph A. Marcus,et al.  Electron Transfer Reactions in Chemistry: Theory and Experiment (Nobel Lecture) , 1993 .

[8]  S. Sligar,et al.  Coupling of spin, substrate, and redox equilibria in cytochrome P450. , 1976, Biochemistry.

[9]  B. Brunschwig,et al.  Directional electron transfer: conformational interconversions and their effects on observed electron-transfer rate constants , 1989 .

[10]  T. Hambley Steric contributions to the thermodynamics of electron transfer in cobalt(III) hexaamine complexes , 1988 .

[11]  Mark T. Fisher,et al.  Control of heme protein redox potential and reduction rate: linear free energy relation between potential and ferric spin state equilibrium , 1985 .

[12]  S. J. Cyvin,et al.  Molecular vibrations of complexes with trigonal ligands: VII: Hexammines with an octahedral skeleton, application to [Ni(NH3)6]2+ , 1976 .

[13]  J. Jesson,et al.  Spin equilibria in octahedral iron(II) poly((1-pyrazolyl)-borates , 1967 .

[14]  F. Grandjean,et al.  Study of the High-temperature Spin-State Crossover in the Iron(II) Pyrazolylborate Complex Fe[HB(pz) 3 ] 2 , 1989 .

[15]  O. Kahn,et al.  Spin-Transition Polymers: From Molecular Materials Toward Memory Devices , 1998 .

[16]  P. Hendry,et al.  Structure, Reactivity, Spectra, and Redox Properties of Cobalt(III) Hexaamines , 1990 .

[17]  C. Amatore,et al.  Ohmic drop compensation in cyclic voltammetry at scan rates in the megavolt per second range: access to nanometric diffusion layers via transient electrochemistry , 2000 .

[18]  Maurizio Licchelli,et al.  Transition Metals as Switches , 1999 .

[19]  D. Turner,et al.  Dynamics of cobalt(II) spin-equilibrium complexes , 1995 .

[20]  Ortiz de Montellano,et al.  Cytochrome P-450: Structure, Mechanism, and Biochemistry , 1986 .

[21]  V. Davidson Effects of kinetic coupling on experimentally determined electron transfer parameters. , 2000, Biochemistry.

[22]  G. Mclendon Book review , 1995 .

[23]  M. J. Weaver Interpretation of activation parameters for simple electrode reactions , 1976 .

[24]  J. Savéant,et al.  Homogeneous redox catalysis of electrochemical reactions electron transfers followed by a very fast chemical step , 1986 .

[25]  G. Navon,et al.  59Co NMR of a cobalt(III) spin-crossover compound , 1984 .

[26]  M. Tweedle,et al.  Bis(N-methylethylenediminesalicylaldiminato)iron(III) complexes. Magnetic, Moessbauer, and intersystem crossing rate studies in the solid and solution states for a new (S = /sup 1///sub 2/) in equilibrium (S = /sup 5///sub 2/) spin-equilibrium case , 1978 .

[27]  P. Comba,et al.  Modeling of the Redox Properties of (Hexaamine)cobalt(III/II) Couples. , 1997, Inorganic chemistry.

[28]  J. McCusker,et al.  Variable-Temperature Studies of Laser-Initiated 5T2 → 1A1 Intersystem Crossing in Spin-Crossover Complexes: Empirical Correlations between Activation Parameters and Ligand Structure in a Series of Polypyridyl Ferrous Complexes , 1996 .

[29]  J. W. Turner,et al.  Intramolecular and Environmental Contributions to Electrode Half-Reaction Entropies of M(tacn)23+/2+ (M = Fe, Co, Ni, Ru; tacn = 1,4,7-Triazacyclononane) Redox Couples , 1999 .

[30]  J. Jacq Schema carre: Etablissement et Discussion de L'equation Generale de la Courbe Intensite-Potentiel en Regime Stationnaire et Diffusion Convective , 1971 .

[31]  R. Martin,et al.  Tris(dithiocarbamato) complexes of iron(II), iron(III), and iron(IV). Electrochemical study , 1975 .

[32]  Dennis H. Evans,et al.  Digital simulation of the square scheme in cyclic voltammetry: A comparison of methods , 1990 .

[33]  F. A. Schultz,et al.  INNER-SHELL EFFECTS ON HETEROGENEOUS ELECTRON-TRANSFER RATES OF BIS(1,4,7-TRIAZACYCLOMONANE) (TACN) REDOX COUPLES, M(TACN)23+/2+ (M=FE, CO, NI, RU= , 1994 .

[34]  D. Richardson,et al.  Vibrational and electronic contributions to entropy changes for oxidation-reduction reactions of metal complexes , 1993 .

[35]  C. Shu,et al.  Electrochemical and spectral characterization of the "square scheme" for the substitution of N-methylpyrazinium cation on the ethylenediaminetetraacetate complexes of ruthenium(III) and ruthenium(II) , 1991 .

[36]  J. Berg,et al.  Principles Of Bioinorganic Chemistry , 1994 .

[37]  L. Wilson,et al.  Solvent and structure effects on the spin-crossover and electron-transfer properties of [FeIII(X-Salmeen)2](PF6) and [FeIII(X-Sal)2trien](PF6) , 1984 .

[38]  P. Guetlich,et al.  Spin-crossover cobalt(III) complexes: steric and electronic control of spin state , 1987 .

[39]  J. Winkler,et al.  Electron Transfer In Proteins , 1997, QELS '97., Summaries of Papers Presented at the Quantum Electronics and Laser Science Conference.

[40]  M. J. Weaver,et al.  A survey of ligand effects upon the reaction entropies of some transition metal redox couples , 1979 .

[41]  S. Seki,et al.  Phonon coupled cooperative low-spin 1A1high-spin 5T2 transition in [Fe(phen)2(NCS)2] and [Fe(phen)2(NCSe)2] crystals , 1974 .

[42]  Christopher A. Reed,et al.  Spin-state/stereochemical relationships in iron porphyrins: implications for the hemoproteins , 1981 .

[43]  L. Wilson,et al.  Substituent effects on the spin equilibrium observed with hexadentate ligands on iron(II) , 1975 .

[44]  M. Newton The hexaammine cobalt (2+/3+) exchange reaction: ground-state versus thermally excited pathways , 1991 .

[45]  B. Burgess,et al.  Mechanism of Molybdenum Nitrogenase. , 1996, Chemical reviews.

[46]  R. L. Martin,et al.  The ligand field 1A1-5T2 spin crossover with iron(II) encapsulated in hexa-amine cages , 1994 .

[47]  T. Swaddle,et al.  THE LIGAND CAGE EFFECT IN VOLUMES OF ACTIVATION FOR ELECTRON TRANSFER REACTIONS OF COBALT(III/II) COMPLEXES IN AQUEOUS SOLUTION , 1995 .

[48]  P. Comba Strains and stresses in coordination compounds , 1999 .

[49]  T. Swaddle Reflections on the outer-sphere mechanism of electron transfer , 1996 .

[50]  M. Tweedle,et al.  Variable spin iron(III) chelates with hexadentate ligands derived from triethylenetetramine and various salicylaldehydes. Synthesis, characterization, and solution state studies of a new 2T .dblarw. 6A spin equilibrium system , 1976 .

[51]  Structure and Function of Nitrogenase , 1993 .

[52]  D. Turner,et al.  Rate of intersystem crossing between 1A and 5Aa states of an iron(II) complex in solutions , 1973 .

[53]  L. Wilson,et al.  Synthesis and spin-state studies in solution of .gamma.-substituted tris(.beta.-diketonato) iron(III) complexes and their spin-equilibrium .beta.-ketoimine analogues derived from triethylenetetramine , 1976 .

[54]  H. Toftlund Spin equilibria in iron(II) complexes , 1989 .

[55]  Scott R. Wilson,et al.  (Tetrakis(2-pyridylmethyl)ethylenediamine)iron(II) perchlorate, the first rapidly interconverting ferrous spin-crossover complex , 1990 .

[56]  C. Bamford,et al.  Comprehensive Chemical Kinetics , 1976 .

[57]  M. Zerner,et al.  Hexaamminecobalt electron-self-exchange reaction , 1986 .

[58]  H. Yasuda,et al.  A correlation between spin state and electrochemical electron-transfer rate for tris(N,N-disubtituted dithiocarbamato) iron(III) complexes , 1978 .