Rhodamine-6G organic films for optical limits: structural analysis, surface morphology, linear and nonlinear optical characteristics

[1]  I. Yahia,et al.  Thermally evaporated of homogeneous nanostructured gallium-phthalocyanine-chloride films: Optical spectroscopy , 2020 .

[2]  I. Yahia,et al.  Thin films of nanostructured gallium (III) chloride phthalocyanine deposited on FTO: Structural characterization, optical properties, and laser optical limiting , 2020 .

[3]  I. Yahia,et al.  Facile deposition of nanostructured Rhodamine-6G/FTO optical system thin films for optical limiting , 2020 .

[4]  I. Yahia,et al.  Deposition of nanostructured methyl violet-10B films/FTO: Optical limiting and optical linearity/nonlinearity , 2020 .

[5]  Shu-Pao Wu,et al.  Turn on fluorescent chemosensor containing rhodamine B fluorophore for selective sensing and in vivo fluorescent imaging of Fe3+ ions in HeLa cell line and zebrafish , 2019, Journal of Photochemistry and Photobiology A: Chemistry.

[6]  Shiming Zhang,et al.  Organic and hybrid organic-inorganic flexible optoelectronics: Recent advances and perspectives , 2019, Synthetic Metals.

[7]  I. Yahia,et al.  Deposition of Rhodamine B dye on flexible substrates for flexible organic electronic and optoelectronic: Optical spectroscopy by Kramers-Kronig analysis , 2019, Optical Materials.

[8]  M. Rashad,et al.  The promotion of Indeno [1, 2-b] flourene-6, 12 dione thin film to be changed into stable aromatic compound under the effect of annealing treatment , 2019, Vacuum.

[9]  M. El-Nahass,et al.  Optical and dispersion properties of thermally deposited phenol red thin films , 2018, Optics & Laser Technology.

[10]  A. Darwish,et al.  Effect of Gamma Radiation Induced on Structural, Electrical, and Optical Properties of N, N′-Dimethyl-3,4,9, 10-Perylenedicarboximide Nanostructure Films , 2018, Journal of Electronic Materials.

[11]  I. Yahia,et al.  Linear and nonlinear optics of pyronin Y/flexible polymer substrate for flexible organic technology: New optical approach , 2017 .

[12]  A. Darwish,et al.  Thermal annealing effect on structural and optical properties of 2,9-Bis [2-(4-chlorophenyl)ethyl] anthrax [2,1,9-def:6,5,10-d′e′f′] diisoquinoline-1,3,8,10 (2H,9H) tetrone (Ch-diisoQ) thin films , 2017 .

[13]  A. Darwish,et al.  Photovoltaic performance of TCVA-InSe hybrid solar cells based on nanostructure films , 2017 .

[14]  T. Nyokong,et al.  Synthesis and optical limiting properties of new lanthanide bis- and tris-phthalocyanines , 2016 .

[15]  F. Hajiesmaeilbaigi,et al.  Effect of gold nanoparticles on the optical properties of Rhodamine 6G , 2016 .

[16]  A. Darwish,et al.  Impact of annealing on the structural and optical properties of methylene green nanostructure films prepared by drop casting , 2016 .

[17]  Chan Zheng,et al.  Synthesis and Optical Limiting Properties of Graphene Oxide/Bimetallic Nanoparticles , 2016 .

[18]  M. El-Nahass,et al.  Structural, optical and dispersion energy parameters of nickel oxide nanocrystalline thin films prepared by electron beam deposition technique , 2015 .

[19]  M. El-Nahass,et al.  Comparable optical properties and dispersion parameters of monomeric axial ruthenium phthalocyanine thin films , 2013 .

[20]  I. Yahia,et al.  Structural, absorption and optical dispersion characteristics of rhodamine B thin films prepared by drop casting technique , 2010 .

[21]  Ahmed A. Al-Ghamdi,et al.  Structure and optical properties of nanocrystalline NiO thin film synthesized by sol–gel spin-coating method , 2009 .

[22]  C. Afonso,et al.  Synthesis and applications of Rhodamine derivatives as fluorescent probes. , 2009, Chemical Society reviews.

[23]  S. K. Tripathi,et al.  Spectroscopic studies of rhodamine 6G dispersed in polymethylcyanoacrylate. , 2005, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[24]  Michael Hanack,et al.  Porphyrins and phthalocyanines as materials for optical limiting , 2004 .

[25]  Tomas Wagner,et al.  Optically and thermally induced changes of structure, linear and non-linear optical properties of chalcogenides thin films , 2003 .

[26]  D. N. Rao,et al.  Nonlinear absorption and excited state dynamics in Rhodamine B studied using Z-scan and degenerate four wave mixing techniques , 2002 .

[27]  Robert A. Street,et al.  Image sensors combining an organic photoconductor with a-Si:H matrix addressing , 2002 .

[28]  Dakshanamoorthy Arivuoli,et al.  Fundamentals of nonlinear optical materials , 2001 .

[29]  H. Ticha,et al.  Optical properties of amorphous As–Se and Ge–As–Se thin films , 1999 .

[30]  J. Zyss,et al.  Growth of organic crystalline thin films, their optical characterization and application to non-linear optics , 1996 .

[31]  C. Borczyskowski,et al.  The incorporation of metal clusters into thin organic dye layers as a method for producing strongly absorbing composite layers: an oscillator model approach to resonant metal cluster absorption , 1995 .

[32]  R. Lufkin,et al.  Laser dyes for experimental phototherapy of human cancer: Comparison of three rhodamines , 1992, The Laryngoscope.

[33]  D. F. Eaton,et al.  Nonlinear Optical Materials , 1991, Science.

[34]  P. Prasad Third-Order Nonlinear Optical Effects in Molecular and Polymeric Materials , 1991 .

[35]  M. DiDomenico,et al.  Behavior of the Electronic Dielectric Constant in Covalent and Ionic Materials , 1971 .

[36]  M. El-Nahass,et al.  Optical characterizations of thermally evaporated perylene-66 (dye content 40%) thin films , 2013 .