Exponential Modeling with Unknown Model Order Using Structured Nonlinear Total Least Norm

A new algorithm called Structured Nonlinear Total Least Norm (SNTLN) has recently been developed for obtaining an approximate solution to the structured overdetermined nonlinear system. Both theoretical justification and computational testing show that SNTLN is an efficient method for solving structured overdetermined systems. In this paper, we present a method based on SNTLN for estimating the parameters of exponentially damped sinusoidal signals in noise when the model order is unknown. It is compared to two other existing methods to show its robustness in recovering correct values of parameters when the model order is unknown, in spite of some large errors in the measured data.

[1]  F. B. Hildebrand,et al.  Introduction To Numerical Analysis , 1957 .

[2]  Ramdas Kumaresan,et al.  Accurate parameter estimation of noisy speech-like signals , 1982, ICASSP.

[3]  R. Kumaresan,et al.  Estimating the parameters of exponentially damped sinusoids and pole-zero modeling in noise , 1982 .

[4]  D. B. Preston Spectral Analysis and Time Series , 1983 .

[5]  K. Arun,et al.  State-space and singular-value decomposition-based approximation methods for the harmonic retrieval problem , 1983 .

[6]  L. Scharf,et al.  A Prony method for noisy data: Choosing the signal components and selecting the order in exponential signal models , 1984, Proceedings of the IEEE.

[7]  J. P. Norton,et al.  An Introduction to Identification , 1986 .

[8]  D. van Ormondt,et al.  Improved algorithm for noniterative time-domain model fitting to exponentially damped magnetic resonance signals , 1987 .

[9]  A. Tarantola Inverse problem theory : methods for data fitting and model parameter estimation , 1987 .

[10]  A. van den Bos Estimation of Fourier coefficients , 1989 .

[11]  S. Van Huffel,et al.  IMPROVED QUANTITATIVE TIME-DOMAIN ANALYSIS OF NMR DATA BY TOTAL LEAST SQUARES. , 1991 .

[12]  D. van Ormondt,et al.  Analysis of NMR Data Using Time Domain Fitting Procedures , 1992 .

[13]  Sabine Van Huffel,et al.  Parameter Estimation with Prior Knowledge of Known Signal Poles for the Quantification of NMR Spectroscopy Data in the Time Domain , 1996 .

[14]  J. Ben Rosen,et al.  Total Least Norm Formulation and Solution for Structured Problems , 1996, SIAM J. Matrix Anal. Appl..

[15]  J. B. Rosen,et al.  Total least norm for linear and nonlinear structured problems , 1997 .

[16]  J. Ben Rosen,et al.  Structured Total Least Norm for Nonlinear Problems , 1998, SIAM J. Matrix Anal. Appl..

[17]  Lei Zhang,et al.  Accurate Solution to Overdetermined Linear Equations with Errors Using L1 Norm Minimization , 2000, Comput. Optim. Appl..

[18]  J. Ben Rosen,et al.  Signal Identification Using a Least L1 Norm Algorithm , 2000 .