High Power Characteristics of Lead-Free Piezoelectric Ceramics

High power characteristics of lead-free (Bi,Na)TiO3 (BNT) and BaTiO3 (BT)-based piezoceramics were investigated and compared to commercial “hard” Pb(Zr,Ti)O3 PZT materials. Acceptor-modified BNT and BT-based ceramics showed typical “hardening” characteristics, exhibiting high mechanical quality factor Qm > 800 and low dielectric loss, <0.01, comparable to “hard” PZT ceramics. Of particular significance is that BNT-based ceramics were found to exhibit minimal variation of resonance frequency shift and high Qm under high level vibration velocity, being ~0.6% and ~800 at 0.25 m/s, respectively, due to the high domain stability associated with their high coercive fields, being on the order of 35 kV/cm.

[1]  D. Viehland,et al.  Influence of Mn Doping on the Structure and Properties of Na0.5Bi0.5TiO3 Single Crystals , 2010 .

[2]  H. Nagata,et al.  High Power Piezoelectric Characteristics for Perovskite-Type Lead-Free Ferroelectric Ceramics , 2010 .

[3]  Jacob L. Jones,et al.  Evolving morphotropic phase boundary in lead-free (Bi1/2Na1/2)TiO3–BaTiO3 piezoceramics , 2011 .

[4]  Dragan Damjanovic,et al.  WHAT CAN BE EXPECTED FROM LEAD-FREE PIEZOELECTRIC MATERIALS? , 2010 .

[5]  Kenji Uchino,et al.  Development of a High Power Piezoelectric Characterization System and Its Application for Resonance/Antiresonance Mode Characterization , 2009 .

[6]  K. Uchino,et al.  Drive Voltage Dependence of Electromechanical Resonance in PLZT Piezoelectric Ceramics , 1989 .

[7]  Thomas R. Shrout,et al.  Lead-free piezoelectric ceramics: Alternatives for PZT? , 2007, Progress in Advanced Dielectrics.

[8]  A. Safari,et al.  Lead-free piezoelectric ceramics and thin films , 2010, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[9]  R. F. Brown,et al.  AN INVESTIGATION OF SOME BARIUM TITANATE COMPOSITIONS FOR TRANSDUCER APPLICATIONS , 1957 .

[10]  Jungho Ryu,et al.  Loss mechanisms and high power piezoelectrics , 2006 .

[11]  S. Nahm,et al.  Effect of CuO on the Sintering Temperature and Piezoelectric Properties of (Na0.5K0.5)NbO3 Lead-Free Piezoelectric Ceramics , 2008 .

[12]  X. Ren,et al.  Large piezoelectric effect in Pb-free ceramics. , 2009, Physical review letters.

[13]  K. H. Härdtl,et al.  Electrical and mechanical losses in ferroelectric ceramics , 1982 .

[14]  D. Lin,et al.  Investigation on the composition design and properties study of perovskite lead-free piezoelectric ceramics , 2009, Journal of Materials Science.

[15]  K. H. Hardtl,et al.  Electrical after-effects in Pb(Ti, Zr)O3 ceramics , 1977 .

[16]  Sadayuki Takahashi Hirose Vibration-Level Characteristics of Lead-Zirconate-Titanate Ceramics , 1992 .

[17]  G. Smolensky,et al.  New ferroelectrics of complex composition. IV , 1961 .

[18]  Field-induced piezoelectric response in Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals , 2006 .

[19]  D. Tanaka,et al.  High Power Characteristics of (Ca,Ba)TiO3 Piezoelectric Ceramics with High Mechanical Quality Factor , 2010 .

[20]  Yasuyoshi Saito,et al.  Lead-free piezoceramics , 2004, Nature.

[21]  A. Ding,et al.  Characterization of the high-power piezoelectric properties of PMnN–PZT ceramics using constant voltage and pulse drive methods , 2005 .

[22]  T. Shrout,et al.  Piezoelectric and Ferroelectric Properties of Li‐Doped (Bi0.5Na0.5)TiO3–(Bi0.5K0.5)TiO3–BaTiO3 Lead‐Free Piezoelectric Ceramics , 2010 .

[23]  W. Jo,et al.  Perspective on the Development of Lead‐free Piezoceramics , 2009 .

[24]  Takaaki Tsurumi,et al.  Influence of CuO on the Structure and Piezoelectric Properties of the Alkaline Niobate‐Based Lead‐Free Ceramics , 2007 .

[25]  Hui Yan,et al.  Effect of Co2O3 Additive on Structure and Electrical Properties of 85(Bi1/2Na1/2)TiO3–12(Bi1/2K1/2)TiO3–3BaTiO3 Lead‐Free Piezoceramics , 2009 .

[26]  Hajime Nagata,et al.  Current status and prospects of lead-free piezoelectric ceramics , 2005 .

[27]  H. Nagata,et al.  High-Power Characteristics at Large-Amplitude Vibration of (Bi0.5Na0.5)TiO3-Based Lead-Free Ferroelectric Ceramics , 2009 .

[28]  Jingfeng Li,et al.  Domain Engineering of Lead‐Free Li‐Modified (K,Na)NbO3 Polycrystals with Highly Enhanced Piezoelectricity , 2010 .

[29]  K. Uchino,et al.  Eu and Yb Substituent Effects on the Properties of Pb(Zr0.52Ti0.48)O3–Pb(Mn1/3Sb2/3)O3 Ceramics: Development of a New High-Power Piezoelectric with Enhanced Vibrational Velocity , 2001 .

[30]  T. Takenaka,et al.  Piezoelectric properties in (K0.5Bi0.5)TiO 3-(Na0.5Bi0.5)TiO3-BaTiO 3 lead-free ceramics , 2007, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[31]  Yongxiang Li,et al.  A REVIEW ON LEAD-FREE PIEZOELECTRIC CERAMICS STUDIES IN CHINA , 2011 .

[32]  T. Shrout,et al.  Piezoelectric materials for high power, high temperature applications , 2005 .

[33]  Kenji Uchino,et al.  Mn-Modified Pb(Mg1/3Nb2/3)O3–PbTiO3 Ceramics: Improved Mechanical Quality Factors for High-Power Transducer Applications , 2000 .

[34]  T. Takenaka,et al.  Phase relations, dielectric and piezoelectric properties of ceramics in the system (Bi0.5Na0.5)TiO3-PbTiO3 , 1992 .