Masking visual stimuli by transcranial magnetic stimulation

Transcranial magnetic stimulation (TMS) applied over the occipital pole can suppress visual perception. Since its first description in 1989 by Amassian et al., this technique has widely been used to investigate visual processing at the cortical level. This article presents a review of experiments masking visual stimuli by TMS. The psychophysical characterization of TMS masking, the dependence on stimulus onset asynchrony between visual stimulus and TMS pulse, and the topography of masking within the visual field are considered. The relation between visual masking and the generation of phosphenes is discussed as well as the underlying physiological mechanisms.

[1]  P. Lennie The physiological basis of variations in visual latency , 1981, Vision Research.

[2]  H. Wässle,et al.  Response latency of brisk‐sustained (X) and brisk‐transient (Y) cells in the cat retina , 1982, The Journal of physiology.

[3]  A. Barker,et al.  NON-INVASIVE MAGNETIC STIMULATION OF HUMAN MOTOR CORTEX , 1985, The Lancet.

[4]  V. Amassian,et al.  Suppression of visual perception by magnetic coil stimulation of human occipital cortex. , 1989, Electroencephalography and clinical neurophysiology.

[5]  G. Orban,et al.  Response latencies of visual cells in macaque areas V1, V2 and V5 , 1989, Brain Research.

[6]  B U Meyer,et al.  Magnetic stimuli applied over motor and visual cortex: influence of coil position and field polarity on motor responses, phosphenes, and eye movements. , 1991, Electroencephalography and clinical neurophysiology. Supplement.

[7]  B. Day,et al.  Interhemispheric inhibition of the human motor cortex. , 1992, The Journal of physiology.

[8]  John H. R. Maunsell,et al.  Visual response latencies in striate cortex of the macaque monkey. , 1992, Journal of neurophysiology.

[9]  V. Hömberg,et al.  Cerebral visual motion blindness: transitory akinetopsia induced by transcranial magnetic stimulation of human area V5 , 1992, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[10]  H. Masur,et al.  Suppression of visual perception by transcranial magnetic stimulation--experimental findings in healthy subjects and patients with optic neuritis. , 1993, Electroencephalography and clinical neurophysiology.

[11]  Alan P. Rudell,et al.  Unmasking human visual perception with the magnetic coil and its relationship to hemispheric asymmetry , 1993, Brain Research.

[12]  A. Pascual-Leone,et al.  Induction of visual extinction by rapid‐rate transcranial magnetic stimulation of parietal lobe , 1994, Neurology.

[13]  J C Rothwell,et al.  The polarity of the induced electric field influences magnetic coil inhibition of human visual cortex: implications for the site of excitation. , 1994, Electroencephalography and clinical neurophysiology.

[14]  E Marg,et al.  Phosphenes Induced by Magnetic Stimulation Over the Occipital Brain: Description and Probable Site of Stimulation , 1994, Optometry and vision science : official publication of the American Academy of Optometry.

[15]  D. Braun,et al.  Transcranial magnetic stimulation of extrastriate cortex degrades human motion direction discrimination , 1994, Vision Research.

[16]  J. Bullier,et al.  Visual latencies in areas V1 and V2 of the macaque monkey , 1995, Visual Neuroscience.

[17]  S. Zeki,et al.  The consequences of inactivating areas V1 and V5 on visual motion perception. , 1995, Brain : a journal of neurology.

[18]  M. Gazzaniga,et al.  Transcranial magnetic stimulation: delays in visual suppression due to luminance changes. , 1996, Neuroreport.

[19]  C M Epstein,et al.  Magnetic coil suppression of extrafoveal visual perception using disappearance targets. , 1996, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[20]  Alan Cowey,et al.  Temporal aspects of visual search studied by transcranial magnetic stimulation , 1997, Neuropsychologia.

[21]  Santiago Arroyo,et al.  Neuronal Generators of Visual Evoked Potentials in Humans: Visual Processing in the Human Cortex , 1997, Epilepsia.

[22]  R. Ilmoniemi,et al.  Neuronal responses to magnetic stimulation reveal cortical reactivity and connectivity , 1997, Neuroreport.

[23]  Jean Bullier,et al.  The Timing of Information Transfer in the Visual System , 1997 .

[24]  R Kikinis,et al.  Visual hemifield mapping using transcranial magnetic stimulation coregistered with cortical surfaces derived from magnetic resonance images. , 1998, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[25]  A. Cowey,et al.  Task–specific impairments and enhancements induced by magnetic stimulation of human visual area V5 , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[26]  Thomas Kammer,et al.  Are recognition deficits following occipital lobe TMS explained by raised detection thresholds? , 1998, Neuropsychologia.

[27]  U. Ziemann,et al.  Transient visual field defects induced by transcranial magnetic stimulation over human occipital pole , 1998, Experimental Brain Research.

[28]  A. Leventhal,et al.  Signal timing across the macaque visual system. , 1998, Journal of neurophysiology.

[29]  Thomas Kammer,et al.  Phosphenes and transient scotomas induced by magnetic stimulation of the occipital lobe: their topographic relationship , 1998, Neuropsychologia.

[30]  W Paulus,et al.  Differential inhibition of chromatic and achromatic perception by transcranial magnetic stimulation of the human visual cortex. , 1999, Neuroreport.

[31]  Scott T. Grafton,et al.  Role of the posterior parietal cortex in updating reaching movements to a visual target , 1999, Nature Neuroscience.

[32]  S. Shimojo,et al.  Manifestation of scotomas created by transcranial magnetic stimulation of human visual cortex , 1999, Nature Neuroscience.

[33]  E Corthout,et al.  Timing of activity in early visual cortex as revealed by transcranial magnetic stimulation. , 1999, Neuroreport.

[34]  Kuno Kirschfeld,et al.  Cortical visual processing is temporally dispersed by luminance in human subjects , 1999, Neuroscience Letters.

[35]  E Corthout,et al.  Suppression of vision by transcranial magnetic stimulation: a third mechanism , 2000, Neuroreport.

[36]  J. Rothwell,et al.  Motor and phosphene thresholds: a transcranial magnetic stimulation correlation study , 2001, Neuropsychologia.

[37]  C Koch,et al.  Seeing properties of an invisible object: Feature inheritance and shine-through , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[38]  R. Hari,et al.  Coinciding early activation of the human primary visual cortex and anteromedial cuneus , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[39]  H. Topka,et al.  Motor thresholds in humans: a transcranial magnetic stimulation study comparing different pulse waveforms, current directions and stimulator types , 2001, Clinical Neurophysiology.

[40]  M. Erb,et al.  The influence of current direction on phosphene thresholds evoked by transcranial magnetic stimulation , 2001, Clinical Neurophysiology.

[41]  S. Hochstein,et al.  View from the Top Hierarchies and Reverse Hierarchies in the Visual System , 2002, Neuron.

[42]  Thomas Kammer,et al.  Phosphene thresholds evoked by transcranial magnetic stimulation are insensitive to short-lasting variations in ambient light , 2002, Experimental Brain Research.

[43]  Mark Hallett,et al.  Early visual cortical processing suggested by transcranial magnetic stimulation , 2002, Neuroreport.

[44]  Zafiris J Daskalakis,et al.  Transcranial magnetic stimulation: a new investigational and treatment tool in psychiatry. , 2002, The Journal of neuropsychiatry and clinical neurosciences.

[45]  Axel Thielscher,et al.  Linking Physics with Physiology in TMS: A Sphere Field Model to Determine the Cortical Stimulation Site in TMS , 2002, NeuroImage.

[46]  Diane Ruge,et al.  Short‐interval paired‐pulse inhibition and facilitation of human motor cortex: the dimension of stimulus intensity , 2002, The Journal of physiology.

[47]  David E. J. Linden,et al.  Combining transcranial magnetic stimulation and functional imaging in cognitive brain research: possibilities and limitations , 2003, Brain Research Reviews.

[48]  Alvaro Pascual-Leone,et al.  Transcranial magnetic stimulation: a neurochromometrics of mind. , 2003 .

[49]  Michael H. Herzog,et al.  Combining backward masking and transcranial magnetic stimulation in human observers , 2003, Neuroscience Letters.

[50]  Klaus Funke,et al.  Effect of transcranial magnetic stimulation on single‐unit activity in the cat primary visual cortex , 2003, The Journal of physiology.

[51]  Tony Ro,et al.  Feedback Contributions to Visual Awareness in Human Occipital Cortex , 2003, Current Biology.

[52]  Mark Hallett,et al.  Interference with vision by TMS over the occipital pole: a fourth period , 2003, Neuroreport.

[53]  Walsh,et al.  Opinion - The nature of foveal representation , 2004 .

[54]  Michael Erb,et al.  Transcranial magnetic stimulation in the visual system. II. Characterization of induced phosphenes and scotomas , 2004, Experimental Brain Research.

[55]  T. Kammer,et al.  Transcranial magnetic stimulation in the visual system. I. The psychophysics of visual suppression , 2004, Experimental Brain Research.

[56]  Michal Lavidor,et al.  The nature of foveal representation , 2004, Nature Reviews Neuroscience.

[57]  V. Hömberg,et al.  Impairment of visual perception and visual short term memory scanning by transcranial magnetic stimulation of occipital cortex , 2004, Experimental Brain Research.

[58]  K. Sakai,et al.  Preferential activation of different I waves by transcranial magnetic stimulation with a figure-of-eight-shaped coil , 2006, Experimental Brain Research.