Crystallographic model validation: from diagnosis to healing.

Model validation has evolved from a passive final gatekeeping step to an ongoing diagnosis and healing process that enables significant improvement of accuracy. A recent phase of active development was spurred by the worldwide Protein Data Bank requiring data deposition and establishing Validation Task Force committees, by strong growth in high-quality reference data, by new speed and ease of computations, and by an upswing of interest in large molecular machines and structural ensembles. Progress includes automated correction methods, concise and user-friendly validation reports for referees and on the PDB websites, extension of error correction to RNA and error diagnosis to ligands, carbohydrates, and membrane proteins, and a good start on better methods for low resolution and for multiple conformations.

[1]  Clemens Vonrhein,et al.  Exploiting structure similarity in refinement: automated NCS and target-structure restraints in BUSTER , 2012, Acta crystallographica. Section D, Biological crystallography.

[2]  Roland L. Dunbrack,et al.  Conformation dependence of backbone geometry in proteins. , 2009, Structure.

[3]  P Gros,et al.  Inclusion of thermal motion in crystallographic structures by restrained molecular dynamics. , 1990, Science.

[4]  Vincent B. Chen,et al.  Structures of the Bacterial Ribosome in Classical and Hybrid States of tRNA Binding , 2011, Science.

[5]  Alexandre G. de Brevern,et al.  A Novel Evaluation of Residue and Protein Volumes by Means of Laguerre Tessellation , 2010, J. Chem. Inf. Model..

[6]  Krista Joosten,et al.  PDB_REDO: constructive validation, more than just looking for errors , 2012, Acta crystallographica. Section D, Biological crystallography.

[7]  Helen M Berman,et al.  RNA backbone: consensus all-angle conformers and modular string nomenclature (an RNA Ontology Consortium contribution). , 2008, RNA.

[8]  T. A. Jones,et al.  The Uppsala Electron-Density Server. , 2004, Acta crystallographica. Section D, Biological crystallography.

[9]  D. Baker,et al.  RosettaHoles: Rapid assessment of protein core packing for structure prediction, refinement, design, and validation , 2008, Protein science : a publication of the Protein Society.

[10]  Heping Zheng,et al.  Data mining of metal ion environments present in protein structures. , 2008, Journal of inorganic biochemistry.

[11]  J. Thornton,et al.  Satisfying hydrogen bonding potential in proteins. , 1994, Journal of molecular biology.

[12]  David Baker,et al.  Advances, interactions, and future developments in the CNS, Phenix, and Rosetta structural biology software systems. , 2013, Annual review of biophysics.

[13]  Huan‐Xiang Zhou,et al.  Influences of membrane mimetic environments on membrane protein structures. , 2013, Annual review of biophysics.

[14]  V. Lunin,et al.  Detection of alternative conformations by unrestrained refinement. , 2012, Acta crystallographica. Section D, Biological crystallography.

[15]  T. Sasaki,et al.  Pattern analysis and interpretation of scattering from short‐range order stacking in the layered composite crystal 2H‐NaxCoO2·yD2O (x≃ 0.35, y≃ 1.3) , 2010 .

[16]  J. Richardson,et al.  Asparagine and glutamine: using hydrogen atom contacts in the choice of side-chain amide orientation. , 1999, Journal of molecular biology.

[17]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[18]  J. Richardson,et al.  “THE PLOT” THICKENS: MORE DATA, MORE DIMENSIONS, MORE USES , 2013 .

[19]  Paul D. Adams,et al.  phenix.model_vs_data: a high-level tool for the calculation of crystallographic model and data statistics , 2010, Journal of applied crystallography.

[20]  Raymond C Stevens,et al.  Retraction: Cocrystal structure of synaptobrevin-II bound to botulinum neurotoxin type B at 2.0 Å resolution , 2009, Nature Structural &Molecular Biology.

[21]  George N Phillips,et al.  Ensemble refinement of protein crystal structures: validation and application. , 2007, Structure.

[22]  Jie Luo,et al.  Retrieval of Crystallographically-Derived Molecular Geometry Information , 2004, J. Chem. Inf. Model..

[23]  H. Berman,et al.  The future of the Protein Data Bank. , 2013, Biopolymers.

[24]  Vincent B. Chen,et al.  Correspondence e-mail: , 2000 .

[25]  Retraction Kiehntopf,et al.  Retraction , 1997, Concurr. Comput. Pract. Exp..

[26]  Zbigniew Dauter,et al.  In defence of our science – validation now! , 2010, Acta crystallographica. Section F, Structural biology and crystallization communications.

[27]  C. Sander,et al.  Errors in protein structures , 1996, Nature.

[28]  R. Huber,et al.  Accurate Bond and Angle Parameters for X-ray Protein Structure Refinement , 1991 .

[29]  Garib N Murshudov,et al.  Intensity statistics in twinned crystals with examples from the PDB. , 2006, Acta crystallographica. Section D, Biological crystallography.

[30]  Saulius Gražulis,et al.  Crystallography Open Database – an open-access collection of crystal structures , 2009, Journal of applied crystallography.

[31]  M. DePristo,et al.  Heterogeneity and inaccuracy in protein structures solved by X-ray crystallography. , 2004, Structure.

[32]  P. D. Adams,et al.  Xtriage and Fest : automatic assessment of X-ray data and substructure structure factor estimation , 2005 .

[33]  Gerard J. Kleywegt,et al.  Validation of protein crystal structures , 2006 .

[34]  Sameer Velankar,et al.  Implementing an X-ray validation pipeline for the Protein Data Bank , 2012, Acta crystallographica. Section D, Biological crystallography.

[35]  Claus-Wilhelm von der Lieth,et al.  GlycoMapsDB: a database of the accessible conformational space of glycosidic linkages , 2007, Nucleic Acids Res..

[36]  A. Niemi,et al.  Correlation between protein secondary structure, backbone bond angles, and side-chain orientations. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[37]  T. Jones,et al.  Between objectivity and subjectivity , 1990, Nature.

[38]  Ian W. Davis,et al.  The backrub motion: how protein backbone shrugs when a sidechain dances. , 2006, Structure.

[39]  G. Phillips,et al.  Mapping the conformations of biological assemblies , 2009, 0909.5404.

[40]  J. Thornton,et al.  PROCHECK: a program to check the stereochemical quality of protein structures , 1993 .

[41]  Sunhwan Jo,et al.  Glycan fragment database: a database of PDB-based glycan 3D structures , 2012, Nucleic Acids Res..

[42]  Ankur Dhanik,et al.  Modeling discrete heterogeneity in X-ray diffraction data by fitting multi-conformers. , 2009, Acta crystallographica. Section D, Biological crystallography.

[43]  Randy J. Read,et al.  Interpretation of ensembles created by multiple iterative rebuilding of macromolecular models , 2007, Acta crystallographica. Section D, Biological crystallography.

[44]  M. Bansal,et al.  Biomolecular Forms and Functions:A Celebration of 50 Years of the Ramachandran Map , 2012 .

[45]  Rhiju Das,et al.  Correcting pervasive errors in RNA crystallography through enumerative structure prediction , 2011, Nature Methods.

[46]  Roland L. Dunbrack Rotamer libraries in the 21st century. , 2002, Current opinion in structural biology.

[47]  F. Allen The Cambridge Structural Database: a quarter of a million crystal structures and rising. , 2002, Acta crystallographica. Section B, Structural science.

[48]  M. Zalis,et al.  Visualizing and quantifying molecular goodness-of-fit: small-probe contact dots with explicit hydrogen atoms. , 1999, Journal of molecular biology.

[49]  Ian W. Davis,et al.  Structure validation by Cα geometry: ϕ,ψ and Cβ deviation , 2003, Proteins.

[50]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[51]  Dale E Tronrud,et al.  Sorting the chaff from the wheat at the PDB , 2008, Protein science : a publication of the Protein Society.

[52]  C. Sander,et al.  Quality control of protein models : directional atomic contact analysis , 1993 .

[53]  Randy J. Read,et al.  Improved crystallographic models through iterated local density-guided model deformation and reciprocal-space refinement , 2012, Acta crystallographica. Section D, Biological crystallography.

[54]  Michael I. Jordan,et al.  Neighbor-Dependent Ramachandran Probability Distributions of Amino Acids Developed from a Hierarchical Dirichlet Process Model , 2010, PLoS Comput. Biol..

[55]  Clifford A Goudey,et al.  Aquaculture in Offshore Zones , 2006, Science.

[56]  Lydia E Kavraki,et al.  Computational models of protein kinematics and dynamics: beyond simulation. , 2012, Annual review of analytical chemistry.

[57]  Randy J. Read,et al.  A New Generation of Crystallographic Validation Tools for the Protein Data Bank , 2011, Structure.

[58]  Michael Levitt,et al.  Super-resolution biomolecular crystallography with low-resolution data , 2010, Nature.

[59]  Randy J. Read,et al.  Crystallography: Crystallographic evidence for deviating C3b structure , 2007, Nature.

[60]  P. Karplus Experimentally observed conformation‐dependent geometry and hidden strain in proteins , 1996, Protein science : a publication of the Protein Society.

[61]  C. Sander,et al.  Positioning hydrogen atoms by optimizing hydrogen‐bond networks in protein structures , 1996, Proteins.

[62]  J. Thornton,et al.  Stereochemical quality of protein structure coordinates , 1992, Proteins.

[63]  W G Hol,et al.  Difference density quality (DDQ): a method to assess the global and local correctness of macromolecular crystal structures. , 1999, Acta crystallographica. Section D, Biological crystallography.

[64]  Matthew B. Tessier,et al.  Carbohydrate force fields , 2002, Wiley interdisciplinary reviews. Computational molecular science.

[65]  H. Ng,et al.  Automated electron‐density sampling reveals widespread conformational polymorphism in proteins , 2010, Protein science : a publication of the Protein Society.

[66]  Shin-Ichiro Nishimura,et al.  Glycoconjugate Data Bank:Structures—an annotated glycan structure database and N-glycan primary structure verification service , 2007, Nucleic Acids Res..

[67]  J. Richardson,et al.  The penultimate rotamer library , 2000, Proteins.

[68]  H. Berman,et al.  New parameters for the refinement of nucleic acid-containing structures. , 1996, Acta crystallographica. Section D, Biological crystallography.

[69]  Thomas Lütteke,et al.  Biological Crystallography Analysis and Validation of Carbohydrate Three-dimensional Structures , 2022 .

[70]  J. Richardson,et al.  Doing molecular biophysics: finding, naming, and picturing signal within complexity. , 2013, Annual review of biophysics.