Singular Separatrix Splitting and the Melnikov Method: An Experimental Study
暂无分享,去创建一个
[1] A. Neishtadt. The separation of motions in systems with rapidly rotating phase , 1984 .
[2] Tere M. Seara,et al. Splitting of Separatrices in Hamiltonian Systems and Symplectic Maps , 1999 .
[3] Tere M. Seara,et al. Exponentially Small Splitting in Hamiltonian Systems , 1994 .
[4] Y B Suris. On the complex separatrices of some standard-like maps , 1994 .
[5] Carles Simó,et al. Hamiltonian systems with three or more degrees of freedom , 1999 .
[6] Leo P. Kadanoff,et al. The break-up of a heteroclinic connection in a volume preserving mapping , 1993 .
[7] C. Simó. On the analytical and numerical approximation of invariant manifolds. , 1990 .
[8] Bernold Fiedler,et al. Discretization of homoclinic orbits, rapid forcing, and "invisible" chaos , 1996 .
[9] Amadeu Delshams,et al. Melnikov Potential for Exact Symplectic Maps , 1997 .
[10] K. Mallick,et al. Exponentially small splitting of separatrices, matching in the complex plane and Borel summation , 1993 .
[11] Héctor E. Lomelí,et al. Perturbations of elliptic billiards , 1996 .
[12] A. Valdés,et al. Exponentially Small Splitting of Separatrices for Perturbed Integrable Standard-Like Maps , 1998 .
[13] David Sauzin,et al. Résurgence paramétrique et exponentielle petitesse de l'écart des séparatrices du pendule rapidement forcé , 1995 .
[14] Jerrold E. Marsden,et al. Exponentially Small Estimates for Separatrix Splittings , 1991 .
[15] L. P. Kadanoff,et al. Beyond all orders: Singular perturbations in a mapping , 1992 .
[16] M. B. Tabanov. Separatrices splitting for Birkhoff's billiard in symmetric convex domain, closed to an ellipse. , 1994, Chaos.
[17] Robert W. Easton,et al. Transport through chaos , 1991 .
[18] V. F. Lazutkin,et al. Splitting of separatrices for standard and semistandard mappings , 1989 .
[19] Amadeu Delshams Valdés,et al. Splitting of separatrices in Hamiltonian systems and symplectic maps , 1997 .
[20] Donald E. Knuth,et al. The art of computer programming. Vol.2: Seminumerical algorithms , 1981 .
[21] Tere M. Seara,et al. Splitting of Separatrices in Hamiltonian Systems with one and a half Degrees of Freedom , 1997 .
[22] V. F. Lazutkin,et al. Exponentially small splittings in Hamiltonian systems. , 1991, Chaos.
[23] Alan Weinstein,et al. Lagrangian Submanifolds and Hamiltonian Systems , 1973 .
[24] Donald E. Knuth. The Art of Computer Programming 2 / Seminumerical Algorithms , 1971 .
[25] Vassiliĭ G. Gelfreich. Conjugation to a shift and the splitting of invariant manifolds , 1997 .
[26] James D. Meiss,et al. Heteroclinic orbits and Flux in a perturbed integrable Suris map , 1996, math/9604231.
[27] Philippe Levallois,et al. Calcul d'une fonction de Melnikov et de ses zeros pour une perturbation algebrique du billard elliptique , 1997, Ergodic Theory and Dynamical Systems.
[28] Ernest Fontich. Rapidly Forced Planar Vector Fields and Splitting of Separatrices , 1995 .
[29] Y. Suris,et al. Integrable mappings of the standard type , 1989 .
[30] James D. Meiss,et al. Transport in Hamiltonian systems , 1984 .
[31] Amadeu Delshams Valdés,et al. Poincaré-Melnikov-Arnold method for analytic planar maps , 1995 .
[32] James D. Meiss,et al. Resonances in area-preserving maps , 1987 .
[33] Wolf-Jürgen Beyn,et al. The Numerical Computation of Homoclinic Orbits for Maps , 1997 .
[34] Amadeu Delshams,et al. Poincaré - Melnikov - Arnold method for analytic planar maps , 1996 .
[35] Carles Simó,et al. The splitting of separatrices for analytic diffeomorphisms , 1990, Ergodic Theory and Dynamical Systems.
[36] P. Levallois,et al. Séparation des séparatrices du billard elliptique pour une perturbation algébrique et symétrique de l'ellipse , 1993 .
[37] David Thomas,et al. The Art in Computer Programming , 2001 .
[38] Reinhard Schäfke,et al. Gevrey separation of fast and slow variables , 1996 .
[39] V. F. Lazutkin,et al. A refined formula for the separatrix splitting for the standard map , 1994 .
[40] Michal Fečkan. On the existence of homoclinic points , 1991 .
[41] J. Meiss. Symplectic maps, variational principles, and transport , 1992 .
[42] Eduardo Tabacman. Variational computation of homoclinic orbits for twist maps , 1995 .
[43] Dmitry V. Treschev,et al. An averaging method for Hamiltonian systems, exponentially close to integrable ones. , 1996, Chaos.