Exploiting reconfigurability for low-power control of embedded processors

This paper proposes and evaluates a new implementation for the lowest level of instruction cache memories, which provides considerable power savings in the control memory subsystem of standard embedded processors. Instead of using power-demanding 6-T SRAMs for small I-caches, we exploit the possibility of using smaller switching capacitances, substituting the memory array with a specialized programmable logic circuit. Switching gains provided by this substitution are presented, illustrating a dramatic potential for power reduction in processor architectures for portable multimedia embedded applications.

[1]  Uri C. Weiser,et al.  MMX technology extension to the Intel architecture , 1996, IEEE Micro.

[2]  Miodrag Potkonjak,et al.  MediaBench: a tool for evaluating and synthesizing multimedia and communications systems , 1997, Proceedings of 30th Annual International Symposium on Microarchitecture.

[3]  Shoichiro Nakamura Applied numerical methods with software , 1991 .

[4]  Chaitali Chakrabarti,et al.  Memory exploration for low power embedded systems , 1999, ISCAS'99. Proceedings of the 1999 IEEE International Symposium on Circuits and Systems VLSI (Cat. No.99CH36349).

[5]  Monica S. Lam,et al.  A data locality optimizing algorithm , 1991, PLDI '91.

[6]  Krste Asanovic,et al.  Dynamic zero compression for cache energy reduction , 2000, MICRO 33.

[7]  Anantha P. Chandrakasan,et al.  Low-Power CMOS Design , 1997 .

[8]  Ruby B. Lee Subword parallelism with MAX-2 , 1996, IEEE Micro.

[9]  Hiroto Yasuura,et al.  A power reduction technique with object code merging for application specific embedded processors , 2000, DATE '00.

[10]  Margaret Martonosi,et al.  Dynamically exploiting narrow width operands to improve processor power and performance , 1999, Proceedings Fifth International Symposium on High-Performance Computer Architecture.

[11]  Marc Tremblay,et al.  The visual instruction set (VIS) in UltraSPARC , 1995, Digest of Papers. COMPCON'95. Technologies for the Information Superhighway.

[12]  Wolfgang Nebel,et al.  Case study: system model of crane and embedded control , 1999, DATE.

[13]  William H. Mangione-Smith,et al.  Filtering Memory References to Increase Energy Efficiency , 2000, IEEE Trans. Computers.

[14]  Hiroyuki Tomiyama,et al.  Instruction scheduling for power reduction in processor-based system design , 1998, Proceedings Design, Automation and Test in Europe.

[15]  Fernando Gehm Moraes,et al.  A Virtual CMOS Library Approach for East Layout Synthesis , 1999, VLSI.

[16]  Wayne H. Wolf,et al.  SAMC: a code compression algorithm for embedded processors , 1999, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[17]  Yvon Savaria,et al.  A method to derive application-specific embedded processing cores , 2000, Proceedings of the Eighth International Workshop on Hardware/Software Codesign. CODES 2000 (IEEE Cat. No.00TH8518).

[18]  Todd M. Austin,et al.  The SimpleScalar tool set, version 2.0 , 1997, CARN.

[19]  Luca Benini,et al.  Selective instruction compression for memory energy reduction in embedded systems , 1999, Proceedings. 1999 International Symposium on Low Power Electronics and Design (Cat. No.99TH8477).

[20]  Takao Onoye,et al.  A low-power-consumption architecture for embedded processors , 1998 .

[21]  Norman P. Jouppi,et al.  CACTI: an enhanced cache access and cycle time model , 1996, IEEE J. Solid State Circuits.

[22]  Reiner W. Hartenstein,et al.  A decade of reconfigurable computing: a visionary retrospective , 2001, Proceedings Design, Automation and Test in Europe. Conference and Exhibition 2001.

[23]  Luigi Carro,et al.  FPGA based systems with linear and non-linear signal processing capabilities , 2000, Proceedings of the 26th Euromicro Conference. EUROMICRO 2000. Informatics: Inventing the Future.