Imaging light responses of retinal ganglion cells in the living mouse eye.

This study reports development of a novel method for high-resolution in vivo imaging of the function of individual mouse retinal ganglion cells (RGCs) that overcomes many limitations of available methods for recording RGC physiology. The technique combines insertion of a genetically encoded calcium indicator into RGCs with imaging of calcium responses over many days with FACILE (functional adaptive optics cellular imaging in the living eye). FACILE extends the most common method for RGC physiology, in vitro physiology, by allowing repeated imaging of the function of each cell over many sessions and by avoiding damage to the retina during removal from the eye. This makes it possible to track changes in the response of individual cells during morphological development or degeneration. FACILE also overcomes limitations of existing in vivo imaging methods, providing fine spatial and temporal detail, structure-function comparison, and simultaneous analysis of multiple cells.

[1]  Andrew C. Weitz,et al.  Imaging the retina ’ s response to electrical stimulation with genetically 1 encoded calcium indicators 2 3 , 2013 .

[2]  G. H. Jacobs,et al.  Influence of cone pigment coexpression on spectral sensitivity and color vision in the mouse , 2004, Vision Research.

[3]  David R Williams,et al.  In vivo imaging of the fine structure of rhodamine-labeled macaque retinal ganglion cells. , 2008, Investigative ophthalmology & visual science.

[4]  J. T. Henriksson,et al.  Ultraviolet radiation transmittance of the mouse eye and its individual media components. , 2010, Experimental eye research.

[5]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[6]  D H Brainard,et al.  The Psychophysics Toolbox. , 1997, Spatial vision.

[7]  Á. Szél,et al.  Two different visual pigments in one retinal cone cell , 1994, Neuron.

[8]  D. van Norren,et al.  The Action Spectrum of Photochemical Damage to the Retina: A Review of Monochromatic Threshold Data , 2011, Photochemistry and photobiology.

[9]  David R Williams,et al.  In vivo imaging of microscopic structures in the rat retina. , 2009, Investigative ophthalmology & visual science.

[10]  M. McCall,et al.  Stimulus size and intensity alter fundamental receptive-field properties of mouse retinal ganglion cells in vivo , 2005, Visual Neuroscience.

[11]  Hongkui Zeng,et al.  A Cre-Dependent GCaMP3 Reporter Mouse for Neuronal Imaging In Vivo , 2012, The Journal of Neuroscience.

[12]  E. Pugh,et al.  UV- and Midwave-Sensitive Cone-Driven Retinal Responses of the Mouse: A Possible Phenotype for Coexpression of Cone Photopigments , 1999, The Journal of Neuroscience.

[13]  James H. Marshel,et al.  New rabies virus variants for monitoring and manipulating activity and gene expression in defined neural circuits. , 2011, Neuron.

[14]  George Paxinos,et al.  The Mouse Brain in Stereotaxic Coordinates , 2001 .

[15]  P. Henrich-Noack,et al.  In vivo confocal neuroimaging (ICON): non‐invasive, functional imaging of the mammalian CNS with cellular resolution , 2010, The European journal of neuroscience.

[16]  G. H. Jacobs,et al.  Evolution of vertebrate colour vision , 2004, Clinical & experimental optometry.

[17]  D. Norren,et al.  Temporal sequence of changes in rat retina after UV-A and blue light exposure , 1999, Vision Research.

[18]  Thomas Euler,et al.  Bulk electroporation and population calcium imaging in the adult mammalian retina. , 2011, Journal of neurophysiology.

[19]  D G Pelli,et al.  The VideoToolbox software for visual psychophysics: transforming numbers into movies. , 1997, Spatial vision.

[20]  Bernard P. Gee,et al.  In vivo fluorescence imaging of primate retinal ganglion cells and retinal pigment epithelial cells. , 2006, Optics express.

[21]  D. van Norren,et al.  Ultraviolet and green light cause different types of damage in rat retina. , 1995, Investigative ophthalmology & visual science.

[22]  E. Chichilnisky,et al.  Functional Asymmetries in ON and OFF Ganglion Cells of Primate Retina , 2002, The Journal of Neuroscience.

[23]  M. Lavail,et al.  Rods and cones in the mouse retina. I. Structural analysis using light and electron microscopy , 1979, The Journal of comparative neurology.

[24]  H. Wässle,et al.  The Primordial, Blue-Cone Color System of the Mouse Retina , 2005, The Journal of Neuroscience.

[25]  L. Pinto,et al.  Response properties of ganglion cells in the isolated mouse retina , 1993, Visual Neuroscience.

[26]  M. Antoch,et al.  The Murine Cone Photoreceptor A Single Cone Type Expresses Both S and M Opsins with Retinal Spatial Patterning , 2000, Neuron.

[27]  Frank Schaeffel,et al.  A paraxial schematic eye model for the growing C57BL/6 mouse , 2004, Vision Research.

[28]  Pavel Osten,et al.  Stereotaxic gene delivery in the rodent brain , 2007, Nature Protocols.

[29]  Jonathan B. Demb,et al.  Spectral and Temporal Sensitivity of Cone-Mediated Responses in Mouse Retinal Ganglion Cells , 2011, The Journal of Neuroscience.

[30]  Edward N. Pugh,et al.  Physiological Features of the S- and M-cone Photoreceptors of Wild-type Mice from Single-cell Recordings , 2006, The Journal of general physiology.

[31]  David Williams,et al.  Adaptive optics retinal imaging in the living mouse eye , 2012, Biomedical optics express.

[32]  G. H. Jacobs,et al.  Contributions of the mouse UV photopigment to the ERG and to vision , 2007, Documenta Ophthalmologica.

[33]  Paul R. Martin,et al.  Chromatic sensitivity of ganglion cells in the peripheral primate retina , 2001, Nature.

[34]  T. M. Esdaille,et al.  Dark Light, Rod Saturation, and the Absolute and Incremental Sensitivity of Mouse Cone Vision , 2010, The Journal of Neuroscience.

[35]  L. Maffei,et al.  Acute physiological response of mammalian central neurons to axotomy: ionic regulation and electrical activity , 2004, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[36]  Jessica I. W. Morgan,et al.  Light-induced retinal changes observed with high-resolution autofluorescence imaging of the retinal pigment epithelium. , 2008, Investigative ophthalmology & visual science.

[37]  B. Sabel,et al.  In vivo confocal neuroimaging (ICON) of CNS neurons , 1997, Nature Medicine.

[38]  Walther Akemann,et al.  Genetically engineered fluorescent voltage reporters. , 2012, ACS chemical neuroscience.

[39]  K. Donner,et al.  In search of the visual pigment template , 2000, Visual Neuroscience.

[40]  Lin Tian,et al.  Imaging Light Responses of Targeted Neuron Populations in the Rodent Retina , 2011, The Journal of Neuroscience.

[41]  F. I. Hárosi Absorption spectra and linear dichroism of some amphibian photoreceptors , 1975, The Journal of general physiology.

[42]  David R. Williams,et al.  Images of photoreceptors in living primate eyes using adaptive optics two-photon ophthalmoscopy , 2010, Biomedical optics express.

[43]  David H Sliney,et al.  Maximum permissible exposures for ocular safety (ANSI 2000), with emphasis on ophthalmic devices. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[44]  Sreekanth H. Chalasani,et al.  Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators , 2009, Nature Methods.

[45]  A. Neufeld,et al.  Early cellular signaling responses to axonal injury , 2009, Cell Communication and Signaling.

[46]  K. Yau,et al.  Phototransduction in Rods and Cones , 2008 .

[47]  Edward N. Pugh,et al.  From candelas to photoisomerizations in the mouse eye by rhodopsin bleaching in situ and the light-rearing dependence of the major components of the mouse ERG , 2004, Vision Research.