Computational power of two stacks with restricted communication

Rewriting systems working on words with a center marker are considered. The derivation is done by erasing a prefix or a suffix and then adding a prefix or a suffix. This models a communication of two stacks according to a fixed protocol defined by the choice of rewriting rules. The paper systematically considers different cases of these systems and determines their expressive power. Several cases are identified where very restricted communication surprisingly yields computational universality.

[1]  Dieter Hofbauer,et al.  Deleting String Rewriting Systems Preserve Regularity , 2003, Developments in Language Theory.

[2]  Arto Salomaa,et al.  Formal languages , 1973, Computer science classics.

[3]  Alexander Okhotin,et al.  Computing by commuting , 2006, Theor. Comput. Sci..

[4]  Jacques Sakarovitch,et al.  Une Application de la Representation Matricielle des Transductions , 1985, Theor. Comput. Sci..

[5]  J. Conway Regular algebra and finite machines , 1971 .

[6]  Joost Engelfriet,et al.  Fixed Point Languages, Equality Languages, and Representation of Recursively Enumerable Languages , 1980, JACM.

[7]  M. W. Shields An Introduction to Automata Theory , 1988 .

[8]  Arnold L. Rosenberg,et al.  Counter machines and counter languages , 1968, Mathematical systems theory.

[9]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[10]  J. Sakarovitch Eléments de théorie des automates , 2003 .

[11]  Emil L. Post Formal Reductions of the General Combinatorial Decision Problem , 1943 .

[12]  J. R. Büchi Regular Canonical Systems , 1964 .

[13]  Michal Kunc The Power of Commuting with Finite Sets of Words , 2006, Theory of Computing Systems.

[14]  Brenda S. Baker,et al.  Reversal-Bounded Multipushdown Machines , 1974, J. Comput. Syst. Sci..

[15]  Oscar H. Ibarra,et al.  Reversal-Bounded Multicounter Machines and Their Decision Problems , 1978, JACM.

[16]  M. Minsky Recursive Unsolvability of Post's Problem of "Tag" and other Topics in Theory of Turing Machines , 1961 .