Discrete Hodge-Operators: an Algebraic Perspective

Discrete differential forms should be used to deal with the discretization of boundary value problems that can be stated in the calculus of differential forms. This approach preserves the topological features of the equations. Yet, the discrete counterparts of the metric- dependent constitutive laws remain elusive. I introduce a few purely algebraic constraints that matrices associated with discrete material laws have to satisfy. It turns out that most finite element and finite volume schemes comply with these requirements. Thus convergence analysis can be conducted in a unified setting. This discloses basic sufficient conditions that discrete material laws have to meet in order to ensure convergence in the relevant energy norms.

[1]  A. Bossavit,et al.  A new viewpoint on mixed elements , 1992 .

[2]  Mikhail Shashkov,et al.  Local Reconstruction of a Vector Field from Its Normal Components on the Faces of Grid Cells , 1998 .

[3]  C. Mattiussi An Analysis of Finite Volume, Finite Element, and Finite Difference Methods Using Some Concepts from Algebraic Topology , 1997 .

[4]  D. Rose,et al.  Some errors estimates for the box method , 1987 .

[5]  J. Maître,et al.  Connection between finite volume and mixed finite element methods , 1996 .

[6]  Alain Bossavit,et al.  Computational electromagnetism and geometry : Building a finite-dimensional "Maxwell's house" (1) : Network equations , 1999 .

[7]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .

[8]  R. Nicolaides,et al.  Covolume Solutions of Three-Dimensional Div-Curl Equations , 1997 .

[9]  Peter Monk,et al.  An analysis of Ne´de´lec's method for the spatial discretization of Maxwell's equations , 1993 .

[10]  T. Tarhasaari,et al.  Some realizations of a discrete Hodge operator: a reinterpretation of finite element techniques [for EM field analysis] , 1999 .

[11]  Roy A. Nicolaides,et al.  Convergence analysis of a covolume scheme for Maxwell's equations in three dimensions , 1998, Math. Comput..

[12]  Enzo Tonti,et al.  On the Geometrical Structure of Electromagnetism , 1999 .

[13]  Rolf Schuhmann,et al.  A stable interpolation technique for FDTD on non-orthogonal grids , 1998 .

[14]  W. Chew,et al.  Lattice electromagnetic theory from a topological viewpoint , 1999 .

[15]  L. Kettunen,et al.  Yee‐like schemes on a tetrahedral mesh, with diagonal lumping , 1999 .

[16]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[17]  M. Shashkov,et al.  The Orthogonal Decomposition Theorems for Mimetic Finite Difference Methods , 1999 .

[18]  T. Weiland Time Domain Electromagnetic Field Computation with Finite Difference Methods , 1996 .

[19]  A. Bossavit 'Generalized Finite Differences' in Computational Electromagnetics , 2001 .

[20]  M. Shashkov Conservative Finite-Difference Methods on General Grids , 1996 .

[21]  Mikhail Shashkov,et al.  Solving Diffusion Equations with Rough Coefficients in Rough Grids , 1996 .

[22]  W. L. Burke Applied Differential Geometry , 1985 .

[23]  Thomas Weiland Die Diskretisierung der Maxwell-Gleichungen: Ein allgemeines Verfahren zur Berechnung elektromagnetischer Felder und seine Anwendung in Physik und Technik , 1986 .

[24]  A. Bossavit How weak is the "weak solution" in finite element methods? , 1998 .

[25]  Weng Cho Chew,et al.  ELECTROMAGNETIC THEORY ON A LATTICE , 1994 .

[26]  M. Shashkov,et al.  Mimetic Discretizations for Maxwell's Equations , 1999 .

[27]  R. Nicolaides Direct discretization of planar div-curl problems , 1992 .

[28]  M. Shashkov,et al.  Adjoint operators for the natural discretizations of the divergence gradient and curl on logically rectangular grids , 1997 .

[29]  Jun Zou,et al.  Fully discrete finite element approaches for time-dependent Maxwell's equations , 1999, Numerische Mathematik.

[30]  E. Süli,et al.  A convergence analysis of Yee's scheme on nonuniform grids , 1994 .

[31]  A. De La Bourdonnaye,et al.  Duality between finite elements and finite volumes and Hodge operator , 1996 .

[32]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[33]  Alain Bossavit,et al.  Yee-like schemes on staggered cellular grids: a synthesis between FIT and FEM approaches , 2000 .

[34]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .

[35]  M. Shashkov,et al.  Natural discretizations for the divergence, gradient, and curl on logically rectangular grids☆ , 1997 .

[36]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[37]  M. Shashkov,et al.  The Numerical Solution of Diffusion Problems in Strongly Heterogeneous Non-isotropic Materials , 1997 .

[38]  A. Dezin Multidimensional Analysis and Discrete Models , 1995 .

[39]  Ursula van Rienen,et al.  Finite integration technique on triangular grids revisited , 1999 .

[40]  Riccardo Sacco Exponentially fitted shape functions for advection-dominated flow problems in two dimensions , 1996 .

[41]  Ralf Hiptmair,et al.  Canonical construction of finite elements , 1999, Math. Comput..