A radial measurement of the galaxy tidal alignment magnitude with BOSS data

The anisotropy of galaxy clustering in redshift space has long been used to probe the rate of growth of cosmological perturbations. However, if galaxies are aligned by large-scale tidal fields, then a sample with an orientation-dependent selection effect has an additional anisotropy imprinted onto its correlation function. We use the LOWZ and CMASS catalogs of SDSS-III BOSS Data Release 12 to divide galaxies into two sub-samples based on their offset from the Fundamental Plane, which should be correlated with orientation. These sub-samples must trace the same underlying cosmology, but have opposite orientation-dependent selection effects. We measure the clustering parameters of each sub-sample and compare them in order to calculate the dimensionless parameter $B$, a measure of how strongly galaxies are aligned by gravitational tidal fields. We found that for CMASS (LOWZ), the measured $B$ was $-0.024 \pm 0.015$ ($-0.030 \pm 0.016$). This result can be compared to the theoretical predictions of Hirata 2009, who argued that since galaxy formation physics does not depend on the direction of the observer, the same intrinsic alignment parameters that describe galaxy-ellipticity correlations should also describe intrinsic alignments in the radial direction. We find that the ratio of observed to theoretical values is $0.51\pm 0.32$ ($0.77\pm0.41$) for CMASS (LOWZ). We combine the results to obtain a total ${\rm {Obs}/{Theory}} = 0.61\pm 0.26$. This measurement constitutes evidence (between 2 and 3$\sigma$) for radial intrinsic alignments, and is consistent with theoretical expectations ($<2\sigma$ difference).

[1]  J. Blazek,et al.  Beyond linear galaxy alignments , 2017, Physical Review D.

[2]  K. Glazebrook,et al.  The Subaru FMOS galaxy redshift survey (FastSound). V. Intrinsic alignments of emission-line galaxies at z ∼ 1.4 , 2017, 1708.02224.

[3]  Yen-Chi Chen,et al.  Intrinsic alignment in redMaPPer clusters – II. Radial alignment of satellites towards cluster centres , 2017, 1704.06273.

[4]  B. Joachimi,et al.  Intrinsic alignment of redMaPPer clusters: cluster shape-matter density correlation , 2017, 1701.02307.

[5]  David R. Silva,et al.  The DESI Experiment Part I: Science,Targeting, and Survey Design , 2016, 1611.00036.

[6]  R. Nichol,et al.  The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: observational systematics and baryon acoustic oscillations in the correlation function , 2016, 1607.03145.

[7]  A. Slosar,et al.  The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Single-probe measurements from DR12 galaxy clustering – towards an accurate model , 2016, 1607.03151.

[8]  Ashley J. Ross,et al.  The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Constraining modified gravity , 2016, 1612.00812.

[9]  W. M. Wood-Vasey,et al.  The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample , 2016, 1607.03155.

[10]  W. Percival,et al.  The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: on the measurement of growth rate using galaxy correlation functions , 2016, 1607.03148.

[11]  P. Schneider,et al.  Intrinsic alignments of galaxies in the Illustris simulation , 2016, 1606.03216.

[12]  Yen-Chi Chen,et al.  Intrinsic alignments in redMaPPer clusters -- I. Central galaxy alignments and angular segregation of satellites , 2016, 1605.01065.

[13]  R. Mandelbaum,et al.  Intrinsic alignments of disc and elliptical galaxies in the MassiveBlack-II and Illustris simulations , 2015, 1510.07024.

[14]  David Schlegel,et al.  SDSS-III Baryon Oscillation Spectroscopic Survey Data Release 12: galaxy target selection and large-scale structure catalogues , 2015, 1509.06529.

[15]  W. Percival,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: RSD measurement from the LOS-dependent power spectrum of DR12 BOSS galaxies , 2015, 1509.06386.

[16]  W. Percival,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: mock galaxy catalogues for the BOSS Final Data Release , 2015, 1509.06400.

[17]  J. Grieb,et al.  Gaussian covariance matrices for anisotropic galaxy clustering measurements , 2015, 1509.04293.

[18]  L. Miller,et al.  Intrinsic alignments of galaxies in the Horizon-AGN cosmological hydrodynamical simulation , 2015, 1507.07843.

[19]  H. Hoekstra,et al.  Intrinsic alignments of galaxies in the EAGLE and cosmo-OWLS simulations , 2015, 1507.06996.

[20]  J. Blazek,et al.  Tidal alignment of galaxies , 2015, 1504.02510.

[21]  Hilo,et al.  THE ELEVENTH AND TWELFTH DATA RELEASES OF THE SLOAN DIGITAL SKY SURVEY: FINAL DATA FROM SDSS-III , 2015, 1501.00963.

[22]  S. More,et al.  Intrinsic alignments of SDSS-III BOSS LOWZ sample galaxies , 2014, 1411.1755.

[23]  C. Behrens,et al.  Inclination dependence of Lyman-α properties in a turbulent disk galaxy , 2014, 1410.3733.

[24]  Mustapha Ishak,et al.  The Intrinsic Alignment of Galaxies and its Impact on Weak Gravitational Lensing in an Era of Precision Cosmology , 2014, 1407.6990.

[25]  R. Mandelbaum,et al.  Intrinsic alignments of group and cluster galaxies in photometric surveys , 2014, 1407.4813.

[26]  W. Percival,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: galaxy clustering measurements in the low-redshift sample of Data Release 11 , 2014, 1401.1768.

[27]  R. Nichol,et al.  The Clustering of Galaxies in the SDSS-III DR10 Baryon Oscillation Spectroscopic Survey: No Detectable Colour Dependence of Distance Scale or Growth Rate Measurements , 2013, 1310.1106.

[28]  Princeton,et al.  Cosmological information in the intrinsic alignments of luminous red galaxies , 2013, 1308.5972.

[29]  B. Reid,et al.  An analytic model for redshift-space distortions , 2013, 1306.1804.

[30]  C. A. Oxborrow,et al.  Planck 2013 results. XVI. Cosmological parameters , 2013, 1303.5076.

[31]  R. Nichol,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: the low-redshift sample , 2012, 1211.3976.

[32]  B. Reid,et al.  Convolution Lagrangian perturbation theory for biased tracers , 2012, 1209.0780.

[33]  Walter A. Siegmund,et al.  THE MULTI-OBJECT, FIBER-FED SPECTROGRAPHS FOR THE SLOAN DIGITAL SKY SURVEY AND THE BARYON OSCILLATION SPECTROSCOPIC SURVEY , 2012, 1208.2233.

[34]  W. M. Wood-Vasey,et al.  THE BARYON OSCILLATION SPECTROSCOPIC SURVEY OF SDSS-III , 2012, 1208.0022.

[35]  M. A. Strauss,et al.  SPECTRAL CLASSIFICATION AND REDSHIFT MEASUREMENT FOR THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY , 2012, 1207.7326.

[36]  Will Saunders,et al.  The 6dF Galaxy Survey: z \approx 0 measurement of the growth rate and sigma_8 , 2012, 1204.4725.

[37]  Scott Croom,et al.  The WiggleZ Dark Energy Survey: joint measurements of the expansion and growth history at z < 1 , 2012, 1204.3674.

[38]  L. Infante,et al.  The VLT LBG Redshift Survey - III. The clustering and dynamics of Lyman-break galaxies at z ~ 3 , 2012, 1204.3635.

[39]  Daniel Thomas,et al.  The clustering of galaxies in the sdss-iii baryon oscillation spectroscopic survey: Baryon acoustic oscillations in the data release 9 spectroscopic galaxy sample , 2012, 1312.4877.

[40]  Tim D. Higgs,et al.  The morphology of galaxies in the Baryon Oscillation Spectroscopic Survey , 2011, 1106.3331.

[41]  Adam D. Myers,et al.  Ameliorating systematic uncertainties in the angular clustering of galaxies: a study using the SDSS-III , 2011, 1105.2320.

[42]  J. Lesgourgues,et al.  The Cosmic Linear Anisotropy Solving System (CLASS). Part II: Approximation schemes , 2011, 1104.2933.

[43]  J. Blazek,et al.  Testing the tidal alignment model of galaxy intrinsic alignment , 2011, 1101.4017.

[44]  Aniruddha R. Thakar,et al.  ERRATUM: “THE EIGHTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST DATA FROM SDSS-III” (2011, ApJS, 193, 29) , 2011 .

[45]  R. Nichol,et al.  THE CLUSTERING OF MASSIVE GALAXIES AT z ∼ 0.5 FROM THE FIRST SEMESTER OF BOSS DATA , 2010, 1010.4915.

[46]  University College London,et al.  Constraints on intrinsic alignment contamination of weak lensing surveys using the MegaZ-LRG sample , 2010, 1008.3491.

[47]  E. Krause,et al.  Tidal alignments as a contaminant of the galaxy bispectrum , 2010, 1004.3611.

[48]  Zheng Zheng,et al.  RADIATIVE TRANSFER MODELING OF Lyα EMITTERS. II. NEW EFFECTS ON GALAXY CLUSTERING , 2010, 1003.4990.

[49]  Mamoru Doi,et al.  PHOTOMETRIC RESPONSE FUNCTIONS OF THE SLOAN DIGITAL SKY SURVEY IMAGER , 2010, 1002.3701.

[50]  C. Hirata Tidal alignments as a contaminant of redshift space distortions , 2009, 0903.4929.

[51]  Teppei Okumura,et al.  THE GRAVITATIONAL SHEAR–INTRINSIC ELLIPTICITY CORRELATION FUNCTIONS OF LUMINOUS RED GALAXIES IN OBSERVATION AND IN THE ΛCDM MODEL , 2008, 0812.2935.

[52]  K. Abazajian,et al.  THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2008, 0812.0649.

[53]  M. Bernardi,et al.  The luminosity and stellar mass Fundamental Plane of early‐type galaxies , 2008, 0810.4924.

[54]  Gary M. Bernstein,et al.  COMPREHENSIVE TWO-POINT ANALYSES OF WEAK GRAVITATIONAL LENSING SURVEYS , 2008, 0808.3400.

[55]  Durham,et al.  What is the best way to measure baryonic acoustic oscillations , 2008, 0804.0233.

[56]  A. Mazure,et al.  A test of the nature of cosmic acceleration using galaxy redshift distortions , 2008, Nature.

[57]  A. Myers,et al.  QSO-LRG two-point cross-correlation function and redshift-space distortions , 2008, 0801.1816.

[58]  W. M. Wood-Vasey,et al.  SDSS-III: MASSIVE SPECTROSCOPIC SURVEYS OF THE DISTANT UNIVERSE, THE MILKY WAY, AND EXTRA-SOLAR PLANETARY SYSTEMS , 2011, 1101.1529.

[59]  Sarah Bridle,et al.  Dark energy constraints from cosmic shear power spectra: impact of intrinsic alignments on photometric redshift requirements , 2007, 0705.0166.

[60]  S. Roweis,et al.  An Improved Photometric Calibration of the Sloan Digital Sky Survey Imaging Data , 2007, astro-ph/0703454.

[61]  R. Nichol,et al.  Intrinsic galaxy alignments from the 2SLAQ and SDSS surveys: luminosity and redshift scalings and implications for weak lensing surveys , 2007, astro-ph/0701671.

[62]  R. Nichol,et al.  The 2dF-SDSS LRG and QSO Survey: the LRG 2-point correlation function and redshift-space distortions , 2006, astro-ph/0612400.

[63]  R. Nichol,et al.  Cosmological constraints from the SDSS luminous red galaxies , 2006, astro-ph/0608632.

[64]  I. Smail,et al.  The 2df SDSS LRG and QSO survey: evolution of the luminosity function of luminous red galaxies to z= 0.6 , 2006, astro-ph/0607629.

[65]  Walter A. Siegmund,et al.  # 2006. The American Astronomical Society. All rights reserved. Printed in U.S.A. THE 2.5 m TELESCOPE OF THE SLOAN DIGITAL SKY SURVEY , 2005 .

[66]  J. Brinkmann,et al.  Detection of large-scale intrinsic ellipticity—density correlation from the Sloan Digital Sky Survey and implications for weak lensing surveys , 2005, astro-ph/0509026.

[67]  Porto,et al.  Constraining beta(z) and Omega_m from redshift-space distortions in z~3 galaxy surveys , 2005, astro-ph/0505469.

[68]  J. Cohn Power spectrum and correlation function errors: Poisson vs. Gaussian shot noise , 2005, astro-ph/0503285.

[69]  U. Seljak,et al.  Intrinsic alignment-lensing interference as a contaminant of cosmic shear , 2004, astro-ph/0406275.

[70]  R. Nichol,et al.  The Three-Dimensional Power Spectrum of Galaxies from the Sloan Digital Sky Survey , 2003, astro-ph/0310725.

[71]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[72]  R. Nichol,et al.  Early-Type Galaxies in the Sloan Digital Sky Survey. III. The Fundamental Plane , 2003, astro-ph/0301626.

[73]  R. Nichol,et al.  Early-type Galaxies in the Sloan Digital Sky Survey. II. Correlations between Observables , 2003, astro-ph/0301624.

[74]  O. Lahav,et al.  The 2dF Galaxy Redshift Survey: The bias of galaxies and the density of the Universe , 2001, astro-ph/0112161.

[75]  R. Ellis,et al.  A measurement of the cosmological mass density from clustering in the 2dF Galaxy Redshift Survey , 2001, Nature.

[76]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.

[77]  Roger D. Blandford,et al.  Intrinsic and extrinsic galaxy alignment , 2000, astro-ph/0005470.

[78]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[79]  Wayne Hu,et al.  Baryonic Features in the Matter Transfer Function , 1997, astro-ph/9709112.

[80]  Q. Parker,et al.  The Durham/UKST Galaxy Redshift Survey – IV. Redshift-space distortions in the two-point correlation function , 1997, astro-ph/9702228.

[81]  M. Fukugita,et al.  The Sloan Digital Sky Survey Photometric System , 1996 .

[82]  I. Jørgensen,et al.  The Fundamental Plane for cluster E and S0 galaxies , 1995, astro-ph/9511139.

[83]  S. Maddox,et al.  The Stromlo-APM Redshift Survey. III. Redshift Space Distortions, Omega, and Bias , 1995, astro-ph/9505099.

[84]  D. Weinberg,et al.  Constraints on Omega from the IRAS redshift surveys , 1994, astro-ph/9412062.

[85]  L. Ciotti,et al.  Alignment and morphology of elliptical galaxies : the influence of the cluster tidal field. , 1994, astro-ph/9404059.

[86]  A. Szalay,et al.  Bias and variance of angular correlation functions , 1993 .

[87]  A. Hamilton Omega from the anisotropy of the redshift correlation function , 1993 .

[88]  A. Hamilton Measuring Omega and the real correlation function from the redshift correlation function , 1992 .

[89]  N. Kaiser Clustering in real space and in redshift space , 1987 .

[90]  S. Djorgovski,et al.  Fundamental Properties of Elliptical Galaxies , 1987 .

[91]  N. Kaiser A sparse-sampling strategy for the estimation of large-scale clustering from redshift surveys , 1986 .

[92]  B. Peterson,et al.  A complete galaxy redshift sample – I. The peculiar velocities between galaxy pairs and the mean mass density of the Universe , 1983 .

[93]  Marc Davis,et al.  A survey of galaxy redshifts. V. The two-point position and velocity correlations. , 1983 .

[94]  S. Shectman,et al.  A million cubic megaparsec void in Bootes , 1981 .

[95]  L. Thompson The angular momentum properties of galaxies in rich clusters , 1975 .

[96]  M. G. Hauser,et al.  Statistical analysis of catalogs of extragalactic objects. III - The Shane-Wirtanen and Zwicky catalogs , 1974 .

[97]  M. J. D. Powell,et al.  On search directions for minimization algorithms , 1973, Math. Program..

[98]  J. C. Jackson A Critique of Rees's Theory of Primordial Gravitational Radiation , 1972 .

[99]  Kenneth Levenberg A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .

[100]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[101]  Phillip James Edwin Peebles,et al.  Origin of the Angular Momentum of Galaxies , 1969 .

[102]  Annales d'Astrophysique , 1946, Nature.