New Mode of Energy Metabolism in the Seventh Order of Methanogens as Revealed by Comparative Genome Analysis of “Candidatus Methanoplasma termitum”

ABSTRACT The recently discovered seventh order of methanogens, the Methanomassiliicoccales (previously referred to as “Methanoplasmatales”), so far consists exclusively of obligately hydrogen-dependent methylotrophs. We sequenced the complete genome of “Candidatus Methanoplasma termitum” from a highly enriched culture obtained from the intestinal tract of termites and compared it with the previously published genomes of three other strains from the human gut, including the first isolate of the order. Like all other strains, “Ca. Methanoplasma termitum” lacks the entire pathway for CO2 reduction to methyl coenzyme M and produces methane by hydrogen-dependent reduction of methanol or methylamines, which is consistent with additional physiological data. However, the shared absence of cytochromes and an energy-converting hydrogenase for the reoxidation of the ferredoxin produced by the soluble heterodisulfide reductase indicates that Methanomassiliicoccales employ a new mode of energy metabolism, which differs from that proposed for the obligately methylotrophic Methanosphaera stadtmanae. Instead, all strains possess a novel complex that is related to the F420:methanophenazine oxidoreductase (Fpo) of Methanosarcinales but lacks an F420-oxidizing module, resembling the apparently ferredoxin-dependent Fpo-like homolog in Methanosaeta thermophila. Since all Methanomassiliicoccales also lack the subunit E of the membrane-bound heterodisulfide reductase (HdrDE), we propose that the Fpo-like complex interacts directly with subunit D, forming an energy-converting ferredoxin:heterodisulfide oxidoreductase. The dual function of heterodisulfide in Methanomassiliicoccales, which serves both in electron bifurcation and as terminal acceptor in a membrane-associated redox process, may be a unique characteristic of the novel order.

[1]  S. Gribaldo,et al.  Comparative genomics highlights the unique biology of Methanomassiliicoccales, a Thermoplasmatales-related seventh order of methanogenic archaea that encodes pyrrolysine , 2014, BMC Genomics.

[2]  U. Deppenmeier,et al.  Bioenergetics and anaerobic respiratory chains of aceticlastic methanogens. , 2014, Biochimica et biophysica acta.

[3]  Stefan Schouten,et al.  A re-evaluation of the archaeal membrane lipid biosynthetic pathway , 2014, Nature Reviews Microbiology.

[4]  S. Gribaldo,et al.  Unique Characteristics of the Pyrrolysine System in the 7th Order of Methanogens: Implications for the Evolution of a Genetic Code Expansion Cassette , 2014, Archaea.

[5]  Alexander Neumann,et al.  The Alternative Route to Heme in the Methanogenic Archaeon Methanosarcina barkeri , 2014, Archaea.

[6]  Susumu Goto,et al.  Data, information, knowledge and principle: back to metabolism in KEGG , 2013, Nucleic Acids Res..

[7]  T. Drakenberg,et al.  Functional role of the MrpA- and MrpD-homologous protein subunits in enzyme complexes evolutionary related to respiratory chain complex I. , 2014, Biochimica et biophysica acta.

[8]  William Tottey,et al.  Archaebiotics Proposed therapeutic use of archaea to prevent trimethylaminuria and cardiovascular disease , 2019 .

[9]  S. Gribaldo,et al.  Phylogenomic Data Support a Seventh Order of Methylotrophic Methanogens and Provide Insights into the Evolution of Methanogenesis , 2013, Genome biology and evolution.

[10]  S. Gribaldo,et al.  Genome Sequence of “Candidatus Methanomassiliicoccus intestinalis” Issoire-Mx1, a Third Thermoplasmatales-Related Methanogenic Archaeon from Human Feces , 2013, Genome Announcements.

[11]  U. Maier,et al.  Evidence for glycoprotein transport into complex plastids , 2013, Proceedings of the National Academy of Sciences.

[12]  John Vollmers,et al.  Poles Apart: Arctic and Antarctic Octadecabacter strains Share High Genome Plasticity and a New Type of Xanthorhodopsin , 2013, PloS one.

[13]  Andreas Schramm,et al.  Predominant archaea in marine sediments degrade detrital proteins , 2013, Nature.

[14]  S. Haruta,et al.  Candidatus Methanogranum caenicola: a Novel Methanogen from the Anaerobic Digested Sludge, and Proposal of Methanomassiliicoccaceae fam. nov. and Methanomassiliicoccales ord. nov., for a Methanogenic Lineage of the Class Thermoplasmata , 2013, Microbes and environments.

[15]  D. Moreira,et al.  Microbial diversity in the deep-subsurface hydrothermal aquifer feeding the giant gypsum crystal-bearing Naica Mine, Mexico , 2013, Front. Microbiol..

[16]  A. Spang,et al.  Methylotrophic methanogenic Thermoplasmata implicated in reduced methane emissions from bovine rumen , 2013, Nature Communications.

[17]  V. Müller,et al.  Evolution of Na(+) and H(+) bioenergetics in methanogenic archaea. , 2013, Biochemical Society transactions.

[18]  Pelin Yilmaz,et al.  The SILVA ribosomal RNA gene database project: improved data processing and web-based tools , 2012, Nucleic Acids Res..

[19]  S. Gribaldo,et al.  Genome Sequence of “Candidatus Methanomethylophilus alvus” Mx1201, a Methanogenic Archaeon from the Human Gut Belonging to a Seventh Order of Methanogens , 2012, Journal of bacteriology.

[20]  A. Brune,et al.  “Methanoplasmatales,” Thermoplasmatales-Related Archaea in Termite Guts and Other Environments, Are the Seventh Order of Methanogens , 2012, Applied and Environmental Microbiology.

[21]  C. Robert,et al.  Complete Genome Sequence of Methanomassiliicoccus luminyensis, the Largest Genome of a Human-Associated Archaea Species , 2012, Journal of bacteriology.

[22]  W. Whitman,et al.  Essential anaplerotic role for the energy-converting hydrogenase Eha in hydrogenotrophic methanogenesis , 2012, Proceedings of the National Academy of Sciences.

[23]  B. Dridi,et al.  Methanomassiliicoccus luminyensis gen. nov., sp. nov., a methanogenic archaeon isolated from human faeces. , 2012, International journal of systematic and evolutionary microbiology.

[24]  K. Jarrell,et al.  The archaellum: an old motility structure with a new name. , 2012, Trends in microbiology.

[25]  K. Thormann,et al.  Specificity of motor components in the dual flagellar system of Shewanella putrefaciens CN‐32 , 2012, Molecular microbiology.

[26]  C. Hägerhäll,et al.  The Evolution of Respiratory Chain Complex I from a Smaller Last Common Ancestor Consisting of 11 Protein Subunits , 2011, Journal of Molecular Evolution.

[27]  U. Deppenmeier,et al.  Membrane-Bound Electron Transport in Methanosaeta thermophila , 2011, Journal of bacteriology.

[28]  J. Krzycki,et al.  The complete biosynthesis of the genetically encoded amino acid pyrrolysine from lysine , 2011, Nature.

[29]  Anne-Kristin Kaster,et al.  Coupling of ferredoxin and heterodisulfide reduction via electron bifurcation in hydrogenotrophic methanogenic archaea , 2011, Proceedings of the National Academy of Sciences.

[30]  U. Deppenmeier,et al.  Involvement of Ech hydrogenase in energy conservation of Methanosarcina mazei , 2010, The FEBS journal.

[31]  Anne-Kristin Kaster,et al.  Hydrogenases from methanogenic archaea, nickel, a novel cofactor, and H2 storage. , 2010, Annual review of biochemistry.

[32]  J. Leigh,et al.  Protein complexing in a methanogen suggests electron bifurcation and electron delivery from formate to heterodisulfide reductase , 2010, Proceedings of the National Academy of Sciences.

[33]  G. Fuchs,et al.  Fructose 1,6-bisphosphate aldolase/phosphatase may be an ancestral gluconeogenic enzyme , 2010, Nature.

[34]  O. Gascuel,et al.  New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. , 2010, Systematic biology.

[35]  H. Hemmi,et al.  Geranylfarnesyl diphosphate synthase from Methanosarcina mazei: Different role, different evolution. , 2010, Biochemical and biophysical research communications.

[36]  Nicole R. Buan,et al.  Methanogenesis by Methanosarcina acetivorans involves two structurally and functionally distinct classes of heterodisulfide reductase , 2010, Molecular microbiology.

[37]  Giorgio Valle,et al.  The Gene Ontology in 2010: extensions and refinements , 2009, Nucleic Acids Res..

[38]  Rachel Z. Wolf,et al.  Convergent evolution of coenzyme M biosynthesis in the Methanosarcinales: cysteate synthase evolved from an ancestral threonine synthase. , 2009, The Biochemical journal.

[39]  K. Knittel,et al.  Anaerobic oxidation of methane: progress with an unknown process. , 2009, Annual review of microbiology.

[40]  I-Min A. Chen,et al.  IMG ER: a system for microbial genome annotation expert review and curation , 2009, Bioinform..

[41]  Kenneth H Downing,et al.  Three-dimensional analysis of the structure and ecology of a novel, ultra-small archaeon , 2009, The ISME Journal.

[42]  E. Birney,et al.  Pfam: the protein families database , 2013, Nucleic Acids Res..

[43]  Anne-Kristin Kaster,et al.  Methanogenic archaea: ecologically relevant differences in energy conservation , 2008, Nature Reviews Microbiology.

[44]  Peter H. Janssen,et al.  Structure of the Archaeal Community of the Rumen , 2008, Applied and Environmental Microbiology.

[45]  W. Whitman,et al.  Metabolic, Phylogenetic, and Ecological Diversity of the Methanogenic Archaea , 2008, Annals of the New York Academy of Sciences.

[46]  J. Hackstein,et al.  The competitive success of Methanomicrococcus blatticola, a dominant methylotrophic methanogen in the cockroach hindgut, is supported by high substrate affinities and favorable thermodynamics. , 2007, FEMS microbiology ecology.

[47]  Michelle G. Giglio,et al.  TIGRFAMs and Genome Properties: tools for the assignment of molecular function and biological process in prokaryotic genomes , 2006, Nucleic Acids Res..

[48]  H. König,et al.  Proteinaceous Surface Layers of Archaea: Ultrastructure and Biochemistry , 2007 .

[49]  M. Tivey,et al.  A ubiquitous thermoacidophilic archaeon from deep-sea hydrothermal vents , 2006, Nature.

[50]  W. F. Fricke,et al.  The Genome Sequence of Methanosphaera stadtmanae Reveals Why This Human Intestinal Archaeon Is Restricted to Methanol and H2 for Methane Formation and ATP Synthesis , 2006, Journal of bacteriology.

[51]  Yan Boucher,et al.  Higher-level classification of the Archaea: evolution of methanogenesis and methanogens. , 2005, Archaea.

[52]  J. Hackstein,et al.  The energy metabolism of Methanomicrococcus blatticola: physiological and biochemical aspects , 2005, Antonie van Leeuwenhoek.

[53]  J. Krzycki Function of genetically encoded pyrrolysine in corrinoid-dependent methylamine methyltransferases. , 2004, Current opinion in chemical biology.

[54]  K. Schleifer,et al.  ARB: a software environment for sequence data. , 2004, Nucleic acids research.

[55]  R. Thauer,et al.  Activities of formylmethanofuran dehydrogenase, methylenetetrahydromethanopterin dehydrogenase, methylenetetrahydromethanopterin reductase, and heterodisulfide reductase in methanogenic bacteria , 1991, Archives of Microbiology.

[56]  T. Miller,et al.  Methanosphaera stadtmaniae gen. nov., sp. nov.: a species that forms methane by reducing methanol with hydrogen , 1985, Archives of Microbiology.

[57]  R. Thauer,et al.  Nickel dependence of factor F430 content in Methanobacterium thermoautotrophicum , 1980, Archives of Microbiology.

[58]  O. Kandler,et al.  Chemical composition of the peptidoglycan-free cell walls of methanogenic bacteria , 1978, Archives of Microbiology.

[59]  Rolf Apweiler,et al.  IntEnz, the integrated relational enzyme database , 2004, Nucleic Acids Res..

[60]  Darren A. Natale,et al.  The COG database: an updated version includes eukaryotes , 2003, BMC Bioinformatics.

[61]  H. Boga,et al.  Hydrogen-Dependent Oxygen Reduction by Homoacetogenic Bacteria Isolated from Termite Guts , 2003, Applied and Environmental Microbiology.

[62]  Anne-Lise Veuthey,et al.  Automated annotation of microbial proteomes in SWISS-PROT , 2003, Comput. Biol. Chem..

[63]  M. Huynen,et al.  Molecular characterization of phosphoglycerate mutase in archaea. , 2002, FEMS microbiology letters.

[64]  C. James,et al.  A New UAG-Encoded Residue in the Structure of a Methanogen Methyltransferase , 2002, Science.

[65]  Robert H. White,et al.  Identification of Coenzyme M Biosynthetic Phosphosulfolactate Synthase , 2002, The Journal of Biological Chemistry.

[66]  H. Huber,et al.  The ultrastructure of Ignicoccus: evidence for a novel outer membrane and for intracellular vesicle budding in an archaeon. , 2002, Archaea.

[67]  J. Hackstein,et al.  Methanomicrococcus blatticola gen. nov., sp. nov., a methanol- and methylamine-reducing methanogen from the hindgut of the cockroach Periplaneta americana. , 2000, International journal of systematic and evolutionary microbiology.

[68]  J. Krzycki,et al.  The Trimethylamine Methyltransferase Gene and Multiple Dimethylamine Methyltransferase Genes of Methanosarcina barkeri Contain In-Frame and Read-Through Amber Codons , 2000, Journal of bacteriology.

[69]  R. Hedderich,et al.  Purification and catalytic properties of Ech hydrogenase from Methanosarcina barkeri. , 1999, European journal of biochemistry.

[70]  R. Hedderich,et al.  Methanobacterium thermoautotrophicum encodes two multisubunit membrane-bound [NiFe] hydrogenases. Transcription of the operons and sequence analysis of the deduced proteins. , 1999, European journal of biochemistry.

[71]  R. Thauer Biochemistry of methanogenesis: a tribute to Marjory Stephenson. 1998 Marjory Stephenson Prize Lecture. , 1998, Microbiology.

[72]  J. Krzycki,et al.  Reconstitution of Monomethylamine:Coenzyme M Methyl Transfer with a Corrinoid Protein and Two Methyltransferases Purified fromMethanosarcina barkeri * , 1997, The Journal of Biological Chemistry.

[73]  J. Krzycki,et al.  Reconstitution of Monomethylamine:Coenzyme M methyl transfer with a corrinoid protein and two methyltransferases purified from Methanosarcina barkeri. , 1997, The Journal of biological chemistry.

[74]  R. Thauer,et al.  Biosynthesis of coenzyme F430, a nickel porphinoid involved in methanogenesis. , 2007, Ciba Foundation symposium.

[75]  A. Tachibana A novel prenyltransferase, farnesylgeranyl diphosphate synthase, from the haloalkaliphilic archaeon, Natronobacterium pharaonis , 1994, FEBS letters.

[76]  R. de Wachter,et al.  Extraction of high molecular weight DNA from molluscs. , 2002 .

[77]  Sp Lapage,et al.  International Code of Nomenclature of Bacteria , 1992 .

[78]  G. Vogels,et al.  Methanogenic pathways in Methanosphaera stadtmanae. , 1991, FEMS microbiology letters.

[79]  G. Dunn,et al.  Molecular biology and the control of viral vaccines. , 1990, FEMS microbiology immunology.

[80]  K. Stetter,et al.  Thermoplasma acidophilum and Thermoplasma volcanium sp. nov. from Solfatara Fields , 1988 .

[81]  G. Gottschalk,et al.  Coupling of ATP synthesis and methane formation from methanol and molecular hydrogen in Methanosarcina barkeri. , 1984, European journal of biochemistry.

[82]  W. Zillig,et al.  Organization of rRNA structural genes in the archaebacterium Thermoplasma acidophilum. , 1982, Nucleic acids research.

[83]  R. Thauer,et al.  Incorporation of methionine‐derived methyl groups into factor F430 by Methanobacterium thermoautotrophicum , 1981 .

[84]  W. Whitman,et al.  Presence of nickel in factor F430 from Methanobacterium bryantii. , 1980, Biochemical and biophysical research communications.

[85]  R. Thauer,et al.  Energy Conservation in Chemotrophic Anaerobic Bacteria , 1977, Bacteriological reviews.

[86]  R. Thauer,et al.  Energy conservation in chemotrophic anaerobic bacteria , 1977, Bacteriological reviews.