A numerical analysis on the performance of a pressurized twin power piston gamma-type Stirling engine

[1]  Chin-Hsiang Cheng,et al.  Numerical model for predicting thermodynamic cycle and thermal efficiency of a beta-type Stirling engine with rhombic-drive mechanism , 2010 .

[2]  F. Formosa,et al.  Analytical model for Stirling cycle machine design , 2010, 1301.4584.

[3]  Can Çinar,et al.  Torque and power characteristics of a helium charged Stirling engine with a lever controlled displacer driving mechanism , 2010 .

[4]  Fatih Aksoy,et al.  Thermodynamic analysis of a β type Stirling engine with a displacer driving mechanism by means of a lever , 2009 .

[5]  Andreas Wagner,et al.  Thermodynamic analysis of a gamma type Stirling engine in non-ideal adiabatic conditions , 2009 .

[6]  Fatih Aksoy,et al.  An experimental study on the development of a β-type Stirling engine for low and moderate temperature heat sources , 2009 .

[7]  Iskander Tlili,et al.  Design and performance optimization of GPU-3 Stirling engines , 2008 .

[8]  Somchai Wongwises,et al.  Performance of low-temperature differential Stirling engines , 2007 .

[9]  Henrik Carlsen,et al.  Numerical study on optimal Stirling engine regenerator matrix designs taking into account the effects of matrix temperature oscillations , 2006 .

[10]  Can Çinar,et al.  Manufacturing and testing of a gamma type Stirling engine , 2005 .

[11]  S. C. Kaushik,et al.  Parametric study of irreversible stirling and ericsson cryogenic refrigeration cycles , 2002 .

[12]  Charles Harman,et al.  The effect of irreversibilities on solar Stirling engine cycle performance , 1999 .

[13]  Lanny G. Thieme,et al.  Technology Development for a Stirling Radioisotope Power System for Deep Space Missions , 1999 .

[14]  J. Baik,et al.  An Exact Expression for Shuttle Heat Transfer , 1996 .