Cluster glycosides and heteroglycoclusters presented in alternative arrangements

[1]  C. Ortiz Mellet,et al.  Multivalency as an action principle in multimodal lectin recognition and glycosidase inhibition: a paradigm shift driven by carbon-based glyconanomaterials. , 2017, Journal of materials chemistry. B.

[2]  D. Hazelard,et al.  Investigation of original multivalent iminosugars as pharmacological chaperones for the treatment of Gaucher disease. , 2016, Carbohydrate research.

[3]  I. Carvalho,et al.  CuAAC click chemistry with N-propargyl 1,5-dideoxy-1,5-imino-D-gulitol and N-propargyl 1,6-dideoxy-1,6-imino-D-mannitol provides access to triazole-linked piperidine and azepane pseudo-disaccharide iminosugars displaying glycosidase inhibitory properties. , 2016, Carbohydrate research.

[4]  R. Field,et al.  Carbohydrate CuAAC click chemistry for therapy and diagnosis. , 2016, Carbohydrate research.

[5]  Thisbe K Lindhorst,et al.  Organizing multivalency in carbohydrate recognition. , 2016, Chemical Society reviews.

[6]  R. Das,et al.  Use of ‘click chemistry’ for the synthesis of carbohydrate-porphyrin dendrimers and their multivalent approach toward lectin sensing , 2016 .

[7]  Yannis-Nicolas François,et al.  Iminosugar-Cyclopeptoid Conjugates Raise Multivalent Effect in Glycosidase Inhibition at Unprecedented High Levels. , 2016, Chemistry.

[8]  R. Boukherroub,et al.  Unprecedented inhibition of glycosidase-catalyzed substrate hydrolysis by nanodiamond-grafted O-glycosides , 2015 .

[9]  I. Carvalho,et al.  Click chemistry oligomerisation of azido-alkyne-functionalised galactose accesses triazole-linked linear oligomers and macrocycles that inhibit Trypanosoma cruzi macrophage invasion , 2015, Tetrahedron.

[10]  G. Potocki-Veronese,et al.  Polymeric iminosugars improve the activity of carbohydrate-processing enzymes. , 2015, Bioconjugate chemistry.

[11]  A. Imberty,et al.  Glycomimetics versus multivalent glycoconjugates for the design of high affinity lectin ligands. , 2015, Chemical reviews.

[12]  A. Marra,et al.  Synthesis and glycosidase inhibition properties of triazole-linked calixarene–iminosugar clusters , 2014 .

[13]  T. Arumugam,et al.  'Click' assembly of glycoclusters and discovery of a trehalose analogue that retards Aβ40 aggregation and inhibits Aβ40-induced neurotoxicity. , 2014, Bioorganic & medicinal chemistry letters.

[14]  P. Compain,et al.  The Multivalent Effect in Glycosidase Inhibition: A New, Rapidly Emerging Topic in Glycoscience , 2014, Chembiochem : a European journal of chemical biology.

[15]  C. Ortiz Mellet,et al.  Iminosugar-based glycopolypeptides: glycosidase inhibition with bioinspired glycoprotein analogue micellar self-assemblies. , 2014, Chemical communications.

[16]  C. Ortiz Mellet,et al.  Topological effects and binding modes operating with multivalent iminosugar-based glycoclusters and mannosidases. , 2013, Journal of the American Chemical Society.

[17]  D. A. Russell,et al.  Glyconanoparticles for the plasmonic detection and discrimination between human and avian influenza virus. , 2013, Organic & biomolecular chemistry.

[18]  I. Carvalho,et al.  Design, synthesis and the effect of 1,2,3-triazole sialylmimetic neoglycoconjugates on Trypanosoma cruzi and its cell surface trans-sialidase. , 2012, Bioorganic & medicinal chemistry.

[19]  C. Ortiz Mellet,et al.  The multivalent effect in glycosidase inhibition: probing the influence of architectural parameters with cyclodextrin-based iminosugar click clusters. , 2011, Chemistry.

[20]  I. Carvalho,et al.  Glycoclusters presenting lactose on calix(4)arene cores display trypanocidal activity , 2011 .

[21]  I. Carvalho,et al.  Application of copper(I)-catalysed azide/alkyne cycloaddition (CuAAC) ‘click chemistry’ in carbohydrate drug and neoglycopolymer synthesis , 2010 .

[22]  I. Carvalho,et al.  Cyclooligomerisation of azido-alkyne-functionalised sugars: synthesis of 1,6-linked cyclic pseudo-galactooligosaccharides and assessment of their sialylation by Trypanosoma cruzi trans-sialidase , 2010 .

[23]  Philippe Compain,et al.  Glycosidase inhibition with fullerene iminosugar balls: a dramatic multivalent effect. , 2010, Angewandte Chemie.

[24]  Brendan L Wilkinson,et al.  Synthesis of N-Propargyl Iminosugar Scaffolds for Compound Library Generation using Click Chemistry , 2010 .

[25]  I. Carvalho,et al.  'Click chemistry' synthesis of a library of 1,2,3-triazole-substituted galactose derivatives and their evaluation against Trypanosoma cruzi and its cell surface trans-sialidase. , 2010, Bioorganic & medicinal chemistry.

[26]  R. Linhardt,et al.  Synthesis and Biological Evaluation of Non-Hydrolizable 1,2,3-Triazole Linked Sialic Acid Derivatives as Neuraminidase Inhibitors. , 2009, European journal of organic chemistry.

[27]  I. Carvalho,et al.  Structure and Ligand-Based Drug Design to Propose Novel α-Glucosidase Inhibitors , 2009 .

[28]  C. Ortiz Mellet,et al.  Multivalent iminosugars to modulate affinity and selectivity for glycosidases. , 2009, Organic & biomolecular chemistry.

[29]  T. Ziegler,et al.  Preparation of Some Glycosyl Amino Acid Building Blocks via Click Reaction and Construction of a Glycotetrapeptide Library Using Spot Synthesis , 2008 .

[30]  E. Goddard-Borger,et al.  An efficient, inexpensive, and shelf-stable diazotransfer reagent: imidazole-1-sulfonyl azide hydrochloride. , 2007, Organic letters.

[31]  T. Okamoto,et al.  Biological properties of D- and L-1-deoxyazasugars. , 2005, Journal of medicinal chemistry.

[32]  Carlos H. Tomich P. Silva,et al.  Homology modeling and molecular interaction field studies of α-glucosidases as a guide to structure-based design of novel proposed anti-HIV inhibitors , 2005, J. Comput. Aided Mol. Des..

[33]  U. Nilsson,et al.  Cyclic peptides containing a δ-sugar amino acid: synthesis and evaluation as artificial receptors , 2005 .

[34]  Amos B. Smith,et al.  Synthesis of novel HIV-1 protease inhibitors based on carbohydrate scaffolds , 2003 .

[35]  Carolyn R. Bertozzi,et al.  Essentials of Glycobiology , 1999 .

[36]  T. Lowary,et al.  Recognition of synthetic O-methyl, epimeric, and amino analogues of the acceptor α-L-Fucp-(1 → 2)-β-D-Galp-OR glycosyltransferases☆☆☆ , 1994 .

[37]  C. Danzin,et al.  New Potent α-Glucohydrolase Inhibitor MDL 73945 With Long Duration of Action in Rats , 1991, Diabetes.

[38]  R. Nouguier,et al.  Alkylation of pentaerythritol and trimethylolpropane, two very hydrophilic polyols, by phase-transfer catalysis , 1985 .