A monolithic and a partitioned Reduced Basis Method for Fluid-Structure Interaction problems

The aim of this work is to present an overview about the combination of the Reduced Basis Method (RBM) with two different approaches for Fluid–Structure Interaction (FSI) problems, namely a monolithic and a partitioned approach. We provide the details of implementation of two reduction procedures, and we then apply them to the same test case of interest. We first implement a reduction technique that is based on a monolithic procedure where we solve the fluid and the solid problems all at once. We then present another reduction technique that is based on a partitioned (or segregated) procedure: the fluid and the solid problems are solved separately and then coupled using a fixed point strategy. The toy problem that we consider is based on the Turek–Hron benchmark test case, with a fluid Reynolds number Re = 100.

[1]  Y. Maday Analysis of coupled models for fluid-structure interaction of internal flows , 2009 .

[2]  Stefan Turek,et al.  Numerical Benchmarking of Fluid-Structure Interaction: A Comparison of Different Discretization and Solution Approaches , 2011 .

[3]  Stefan Volkwein,et al.  Galerkin Proper Orthogonal Decomposition Methods for a General Equation in Fluid Dynamics , 2002, SIAM J. Numer. Anal..

[4]  Jean-Luc Guermond,et al.  Calculation of Incompressible Viscous Flows by an Unconditionally Stable Projection FEM , 1997 .

[5]  Annalisa Quaini,et al.  Coupling Biot and Navier-Stokes equations for modelling fluid-poroelastic media interaction , 2009, J. Comput. Phys..

[6]  Gianluigi Rozza,et al.  The Effort of Increasing Reynolds Number in Projection-Based Reduced Order Methods: From Laminar to Turbulent Flows , 2018, Lecture Notes in Computational Science and Engineering.

[7]  Gianluigi Rozza,et al.  Projection-based reduced order models for a cut finite element method in parametrized domains , 2019, Comput. Math. Appl..

[8]  J. Hesthaven,et al.  Certified Reduced Basis Methods for Parametrized Partial Differential Equations , 2015 .

[9]  Peter Hansbo,et al.  CutFEM: Discretizing geometry and partial differential equations , 2015 .

[10]  Annalisa Quaini,et al.  A Monolithic Approach to Fluid–Composite Structure Interaction , 2017, J. Sci. Comput..

[11]  Annalisa Quaini,et al.  A Finite Volume approximation of the Navier-Stokes equations with nonlinear filtering stabilization , 2019, Computers & Fluids.

[12]  Tomas Bengtsson,et al.  Fictitious domain methods using cut elements : III . A stabilized Nitsche method for Stokes ’ problem , 2012 .

[13]  Annalisa Quaini,et al.  Fluid-structure interaction in blood flow capturing non-zero longitudinal structure displacement , 2012, J. Comput. Phys..

[14]  Charbel Farhat,et al.  Towards a Validated FSI Computational Framework for Supersonic Parachute Deployments , 2019, AIAA Aviation 2019 Forum.

[15]  Xiao-Chuan Cai,et al.  A fully implicit domain decomposition based ALE framework for three-dimensional fluid-structure interaction with application in blood flow computation , 2014, J. Comput. Phys..

[16]  Annalisa Quaini,et al.  3D Experimental and Computational Analysis of Eccentric Mitral Regurgitant Jets in a Mock Imaging Heart Chamber , 2017, Cardiovascular engineering and technology.

[17]  Miguel A. Fernández,et al.  A projection semi‐implicit scheme for the coupling of an elastic structure with an incompressible fluid , 2007 .

[18]  P. Tallec,et al.  Fluid structure interaction with large structural displacements , 2001 .

[19]  Annalisa Quaini,et al.  Extended ALE Method for fluid-structure interaction problems with large structural displacements , 2017, J. Comput. Phys..

[20]  Gianluigi Rozza,et al.  Reduced Order Methods for Modeling and Computational Reduction , 2013 .

[21]  Charbel Farhat,et al.  An ALE formulation of embedded boundary methods for tracking boundary layers in turbulent fluid-structure interaction problems , 2014, J. Comput. Phys..

[22]  Fabio Nobile,et al.  Added-mass effect in the design of partitioned algorithms for fluid-structure problems , 2005 .

[23]  Gianluigi Rozza,et al.  Model Order Reduction in Fluid Dynamics: Challenges and Perspectives , 2014 .

[24]  Charbel Farhat,et al.  Reduced-order fluid/structure modeling of a complete aircraft configuration , 2006 .

[25]  Fabio Nobile,et al.  Fluid-structure partitioned procedures based on Robin transmission conditions , 2008, J. Comput. Phys..

[26]  Gianluigi Rozza,et al.  Supremizer stabilization of POD–Galerkin approximation of parametrized steady incompressible Navier–Stokes equations , 2015 .

[27]  G. Rozza,et al.  POD-Galerkin reduced order methods for CFD using Finite Volume Discretisation: vortex shedding around a circular cylinder , 2017, 1701.03424.

[28]  A. Veneziani,et al.  A model reduction approach for the variational estimation of vascular compliance by solving an inverse fluid–structure interaction problem , 2014 .

[29]  Gianluigi Rozza,et al.  Reduced basis approximation and a posteriori error estimation for the time-dependent viscous Burgers’ equation , 2009 .

[30]  Alfio Quarteroni,et al.  Computational vascular fluid dynamics: problems, models and methods , 2000 .

[31]  Annalisa Quaini,et al.  Modular vs. non-modular preconditioners for fluid-structure systems with large added-mass effect , 2008 .

[32]  Yan Yan,et al.  Strongly coupling of partitioned fluid-solid interaction solvers using reduced-order models , 2010 .

[33]  Gianluigi Rozza,et al.  POD–Galerkin monolithic reduced order models for parametrized fluid‐structure interaction problems , 2016 .

[34]  Annalisa Quaini,et al.  A Higher-Order Discontinuous Galerkin/Arbitrary Lagrangian Eulerian Partitioned Approach to Solving Fluid–Structure Interaction Problems with Incompressible, Viscous Fluids and Elastic Structures , 2018, J. Sci. Comput..

[35]  Simone Deparis,et al.  Reduced Numerical Approximation of Reduced Fluid-Structure Interaction Problems With Applications in Hemodynamics , 2018, Front. Appl. Math. Stat..

[36]  Alfio Quarteroni,et al.  Mathematical Modelling and Numerical Simulation of the Cardiovascular System , 2004 .

[37]  Y. Maday,et al.  Existence de solutions d'un problème de couplage fluide-structure bidimensionnel instationnaire , 1998 .

[38]  B. Haasdonk,et al.  REDUCED BASIS METHOD FOR FINITE VOLUME APPROXIMATIONS OF PARAMETRIZED LINEAR EVOLUTION EQUATIONS , 2008 .

[39]  Gianluigi Rozza,et al.  Numerical Simulation of Sailing Boats: Dynamics, FSI, and Shape Optimization , 2012 .

[40]  Jean-Frédéric Gerbeau,et al.  A Quasi-Newton Algorithm Based on a Reduced Model for Fluid-Structure Interaction Problems in Blood Flows , 2003 .

[41]  Gianluigi Rozza,et al.  Reduced-order semi-implicit schemes for fluid-structure interaction problems , 2017, 1711.10829.

[42]  Alfio Quarteroni,et al.  FaCSI: A block parallel preconditioner for fluid-structure interaction in hemodynamics , 2016, J. Comput. Phys..

[43]  S. Turek,et al.  Proposal for Numerical Benchmarking of Fluid-Structure Interaction between an Elastic Object and Laminar Incompressible Flow , 2006 .

[44]  Charbel Farhat,et al.  Design of Efficient Partitioned Procedures for the Transient Solution of Aeroelastic Problems , 2000 .

[45]  Y. Maday,et al.  COUPLAGE FLUIDE-STRUCTURE. UN MODELE SIMPLIFIE EN DIMENSION 1 , 1994 .

[46]  Nikolaus A. Adams,et al.  A cut-cell finite volume - finite element coupling approach for fluid-structure interaction in compressible flow , 2015, J. Comput. Phys..

[47]  Gianluigi Rozza,et al.  A Reduced Basis Model with Parametric Coupling for Fluid-Structure Interaction Problems , 2012, SIAM J. Sci. Comput..

[48]  Jean-Frédéric Gerbeau,et al.  Reduced order model in cardiac electrophysiology with approximated Lax pairs , 2015, Adv. Comput. Math..

[49]  Annalisa Quaini,et al.  Splitting Methods Based on Algebraic Factorization for Fluid-Structure Interaction , 2008, SIAM J. Sci. Comput..

[50]  W. Wall,et al.  Truly monolithic algebraic multigrid for fluid–structure interaction , 2011 .

[51]  Gianluigi Rozza,et al.  A Reduced basis stabilization for the unsteady Stokes and Navier-Stokes equations , 2021, ArXiv.

[52]  Gianluigi Rozza,et al.  Stabilized reduced basis methods for parametrized steady Stokes and Navier-Stokes equations , 2020, Comput. Math. Appl..

[53]  Gianluigi Rozza,et al.  Fast simulations of patient-specific haemodynamics of coronary artery bypass grafts based on a POD-Galerkin method and a vascular shape parametrization , 2016, J. Comput. Phys..

[54]  Gianluigi Rozza,et al.  Overcoming slowly decaying Kolmogorov n-width by transport maps: application to model order reduction of fluid dynamics and fluid-structure interaction problems , 2019, ArXiv.

[55]  Miguel A. Fernández,et al.  Robin Based Semi-Implicit Coupling in Fluid-Structure Interaction: Stability Analysis and Numerics , 2009, SIAM J. Sci. Comput..

[56]  G. Rozza,et al.  Finite volume POD-Galerkin stabilised reduced order methods for the parametrised incompressible Navier–Stokes equations , 2017, Computers & Fluids.

[57]  Marina Vidrascu,et al.  Explicit Robin–Neumann schemes for the coupling of incompressible fluids with thin-walled structures , 2013 .

[58]  Charbel Farhat,et al.  Effects of Structural Parameters on the FSI Simulation of Supersonic Parachute Deployments , 2019, AIAA Aviation 2019 Forum.

[59]  Annalisa Quaini,et al.  Algorithms for fluid-structure interaction problems arising in hemodynamics , 2009 .

[60]  F. Brezzi,et al.  A discourse on the stability conditions for mixed finite element formulations , 1990 .

[61]  Gonçalo Pena,et al.  High-order fluid-structure interaction in 2D and 3D application to blood flow in arteries , 2013, J. Comput. Appl. Math..

[62]  Bernard Haasdonk,et al.  Chapter 2: Reduced Basis Methods for Parametrized PDEs—A Tutorial Introduction for Stationary and Instationary Problems , 2017 .

[63]  Jean-Luc Guermond,et al.  On the approximation of the unsteady Navier–Stokes equations by finite element projection methods , 1998, Numerische Mathematik.

[64]  A. Patera,et al.  Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations , 2007 .

[65]  Charbel Farhat,et al.  Provably second-order time-accurate loosely-coupled solution algorithms for transient nonlinear computational aeroelasticity , 2006 .