Parameter identification of transformer detailed model based on chaos optimisation algorithm

The R-L-C-M model of a power transformer is obtained from geometrical structure and is extremely appropriate for studying transient phenomena in a transformer and detecting mechanical faults. The precision of this model depends strongly on the precision of its parameters. The accuracy of these parameters that are calculated by analytical formulae is limited because of different reasons. In this study a chaos optimisation algorithm (COA) is introduced as a method to identify the parameters of the R-L-C-M model, which represents the transient behaviour of a power transformer more accurately than the model based on calculated parameters using analytical formulae. By applying an experimental test on a proper test object, not only are the validity and accuracy of the proposed method verified, but also COA is compared with another optimisation method referred to as real code genetic algorithm (RCGA).

[1]  Vahid Rashtchi,et al.  Using a genetic algorithm for detection and magnitude determination of turn faults in an induction motor , 2002 .

[2]  V. Brandwajn,et al.  Matrix Representation of Three-Phase N-Winding Transformers for Steady-State and Transient Studies , 1982, IEEE Power Engineering Review.

[3]  F. de Leon,et al.  Complete transformer model for electromagnetic transients , 1994 .

[4]  R. Malewski,et al.  Experimental validation of a computer model simulating an impulse voltage distribution in HV transformer windings , 1994 .

[5]  Mohammad Saleh Tavazoei,et al.  Comparison of different one-dimensional maps as chaotic search pattern in chaos optimization algorithms , 2007, Appl. Math. Comput..

[6]  S. Strogatz Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry and Engineering , 1995 .

[7]  K. Feser,et al.  Transfer Function Method to Diagnose Axial Displacement and Radial Deformation of Transformer Winding , 2002, IEEE Power Engineering Review.

[8]  Luigi Fortuna,et al.  Chaotic sequences to improve the performance of evolutionary algorithms , 2003, IEEE Trans. Evol. Comput..

[9]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[10]  Bing Li,et al.  Optimizing Complex Functions by Chaos Search , 1998, Cybern. Syst..

[11]  K. Feser,et al.  Procedures for detecting winding displacements in power transformers by the transfer function method , 2004, IEEE Transactions on Power Delivery.

[12]  Ma Long-hua,et al.  A new optimization algorithm based on chaos , 2006 .

[13]  A. Mees,et al.  5. Chaos in feedback systems , 1986 .

[14]  László Kiss,et al.  Large Power Transformers , 1987 .

[15]  L. Shengsong,et al.  Hybrid algorithm of chaos optimisation and SLP for optimal power flow problems with multimodal characteristic , 2003 .

[16]  K. Okuyama,et al.  A Calculation Method for Impulse Voltage Distribution and Transferred Voltage in Transformer Windings , 1978, IEEE Transactions on Power Apparatus and Systems.

[17]  Toshimitsu Ushio,et al.  Chaos in non-linear sampled-data control systems , 1983 .

[18]  A. S. Morched,et al.  A high frequency transformer model for the EMTP , 1993 .

[19]  Y. Shibuya,et al.  Analysis of very fast transient overvoltage in transformer winding , 1997 .

[20]  Luigi Fortuna,et al.  Does chaos work better than noise , 2002 .

[21]  D. J. Jefferies,et al.  An introduction to chaos , 1989 .

[22]  T. Leibfried,et al.  Monitoring of power transformers using the transfer function method , 1999 .

[23]  Dieter Kind,et al.  High Voltage Test Techniques , 2001 .

[24]  P.T.M. Vaessen Transformer model for high frequencies , 1988 .

[25]  M. Chari,et al.  Finite Element Solution of Saturable Magnetic Field Problems , 1970 .

[26]  R. Andrew Russell,et al.  A comparison of reactive robot chemotaxis algorithms , 2003, Robotics Auton. Syst..

[27]  Gevork B. Gharehpetian,et al.  Hybrid modelling of inhomogeneous transformer winding for very fast transient overvoltage studies , 1998 .

[28]  C.M. Arturi Transient Simulation and Analysis of Three-Phase Five-Limb Step-Up Transformer Following an Out-of-Phase Synchronization , 1991, IEEE Power Engineering Review.

[29]  Rudolf Küchler Die Transformatoren : Grundlagen für ihre Berechnung und Konstruktion , 1966 .

[30]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .